Chomaz L, van Bijnen R M W, Petter D, Faraoni G, Baier S, Becher J H, Mark M J, Wächtler F, Santos L, Ferlaino F
Institut für Experimentalphysik,Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria.
Institut für Quantenoptik und Quanteninformation,Österreichische Akademie der Wissenschaften, 6020 Innsbruck, Austria.
Nat Phys. 2018 May;14(5):442-446. doi: 10.1038/s41567-018-0054-7. Epub 2018 Mar 5.
The concept of a roton, a special kind of elementary excitation, forming a minimum of energy at finite momentum, has been essential to understand the properties of superfluid He 1. In quantum liquids, rotons arise from the strong interparticle interactions, whose microscopic description remains debated 2. In the realm of highly-controllable quantum gases, a roton mode has been predicted to emerge due to magnetic dipole-dipole interactions despite of their weakly-interacting character 3. This prospect has raised considerable interest 4-12; yet roton modes in dipolar quantum gases have remained elusive to observations. Here we report experimental and theoretical studies of the momentum distribution in Bose-Einstein condensates of highly-magnetic erbium atoms, revealing the existence of the long-sought roton mode. Following an interaction quench, the roton mode manifests itself with the appearance of symmetric peaks at well-defined finite momentum. The roton momentum follows the predicted geometrical scaling with the inverse of the confinement length along the magnetisation axis. From the growth of the roton population, we probe the roton softening of the excitation spectrum in time and extract the corresponding imaginary roton gap. Our results provide a further step in the quest towards supersolidity in dipolar quantum gases 13.
旋子是一种特殊的元激发,在有限动量下形成能量最小值,这一概念对于理解超流氦-1的性质至关重要。在量子液体中,旋子源于强烈的粒子间相互作用,其微观描述仍存在争议。在高度可控的量子气体领域,尽管其相互作用较弱,但由于磁偶极-偶极相互作用,预计会出现旋子模式。这一前景引发了相当大的兴趣;然而,偶极量子气体中的旋子模式仍难以被观测到。在此,我们报告了对高磁性铒原子玻色-爱因斯坦凝聚体中动量分布的实验和理论研究,揭示了长期寻找的旋子模式的存在。在相互作用猝灭后,旋子模式表现为在明确的有限动量处出现对称峰。旋子动量遵循与沿磁化轴的限制长度的倒数的预测几何标度关系。从旋子布居的增长中,我们及时探测激发谱的旋子软化,并提取相应的虚旋子能隙。我们的结果为在偶极量子气体中探索超固体性迈出了进一步的步伐。