Rounds Emily L, Alexander Andrew S, Nitz Douglas A, Krichmar Jeffrey L
Department of Cognitive Sciences, University of California, Irvine.
Department of Cognitive Science, University of California, San Diego.
Behav Neurosci. 2018 Oct;132(5):430-452. doi: 10.1037/bne0000236. Epub 2018 Jun 4.
Retrosplenial cortex (RSC) is an association cortex supporting spatial navigation and memory. However, critical issues remain concerning the forms by which its ensemble spiking patterns register spatial relationships that are difficult for experimental techniques to fully address. We therefore applied an evolutionary algorithmic optimization technique to create spiking neural network models that matched electrophysiologically observed spiking dynamics in rat RSC neuronal ensembles. Virtual experiments conducted on the evolved networks revealed a mixed selectivity coding capability that was not built into the optimization method, but instead emerged as a consequence of replicating biological firing patterns. The experiments reveal several important outcomes of mixed selectivity that may subserve flexible navigation and spatial representation: (a) robustness to loss of specific inputs, (b) immediate and stable encoding of novel routes and route locations, (c) automatic resolution of input variable conflicts, and (d) dynamic coding that allows rapid adaptation to changing task demands without retraining. These findings suggest that biological retrosplenial cortex can generate unique, first-trial, conjunctive encodings of spatial positions and actions that can be used by downstream brain regions for navigation and path integration. Moreover, these results are consistent with the proposed role for the RSC in the transformation of representations between reference frames and navigation strategy deployment. Finally, the specific modeling framework used for evolving synthetic retrosplenial networks represents an important advance for computational modeling by which synthetic neural networks can encapsulate, describe, and predict the behavior of neural circuits at multiple levels of function. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
retrosplenial cortex (RSC) 是一个支持空间导航和记忆的联合皮层。然而,关于其神经元集群放电模式记录空间关系的形式仍存在关键问题,这些问题难以通过实验技术完全解决。因此,我们应用了一种进化算法优化技术来创建尖峰神经网络模型,该模型与大鼠 RSC 神经元集群中电生理观察到的放电动态相匹配。在进化后的网络上进行的虚拟实验揭示了一种混合选择性编码能力,这种能力并非优化方法中内置的,而是在复制生物放电模式的过程中出现的。这些实验揭示了混合选择性的几个重要结果,这些结果可能有助于灵活导航和空间表征:(a) 对特定输入损失的鲁棒性,(b) 对新路线和路线位置的即时稳定编码,(c) 输入变量冲突的自动解决,以及 (d) 动态编码,允许在不重新训练的情况下快速适应不断变化的任务需求。这些发现表明,生物 retrosplenial 皮层可以生成空间位置和动作的独特、首次试验、联合编码,下游脑区可利用这些编码进行导航和路径整合。此外,这些结果与 RSC 在参考系之间的表征转换和导航策略部署中的拟议作用一致。最后,用于进化合成 retrosplenial 网络的特定建模框架代表了计算建模的一个重要进展,通过该框架,合成神经网络可以在多个功能层面封装、描述和预测神经回路的行为。(PsycINFO 数据库记录 (c) 2018 APA,保留所有权利)