Suppr超能文献

固定效应模型与混合效应模型在聚类数据中的应用:方法回顾、差异解析与推荐。

Fixed effects models versus mixed effects models for clustered data: Reviewing the approaches, disentangling the differences, and making recommendations.

机构信息

Department of Psychology.

Department of Information Technology, Analytics, and Operations, University of Notre Dame.

出版信息

Psychol Methods. 2019 Feb;24(1):20-35. doi: 10.1037/met0000182. Epub 2018 Jun 4.

Abstract

Clustered data are common in many fields. Some prominent examples of clustering are employees clustered within supervisors, students within classrooms, and clients within therapists. Many methods exist that explicitly consider the dependency introduced by a clustered data structure, but the multitude of available options has resulted in rigid disciplinary preferences. For example, those working in the psychological, organizational behavior, medical, and educational fields generally prefer mixed effects models, whereas those working in economics, behavioral finance, and strategic management generally prefer fixed effects models. However, increasingly interdisciplinary research has caused lines that separate the fields grounded in psychology and those grounded in economics to blur, leading to researchers encountering unfamiliar statistical methods commonly found in other disciplines. Persistent discipline-specific preferences can be particularly problematic because (a) each approach has certain limitations that can restrict the types of research questions that can be appropriately addressed, and (b) analyses based on the statistical modeling decisions common in one discipline can be difficult to understand for researchers trained in alternative disciplines. This can impede cross-disciplinary collaboration and limit the ability of scientists to make appropriate use of research from adjacent fields. This article discusses the differences between mixed effects and fixed effects models for clustered data, reviews each approach, and helps to identify when each approach is optimal. We then discuss the within-between specification, which blends advantageous properties of each framework into a single model. (PsycINFO Database Record (c) 2019 APA, all rights reserved).

摘要

聚类数据在许多领域中都很常见。聚类的一些突出例子包括:主管内的员工、教室内的学生和治疗师内的客户。有许多方法可以明确考虑到聚类数据结构带来的依赖性,但可用选项的多样性导致了僵化的学科偏好。例如,从事心理学、组织行为学、医学和教育学领域工作的人通常更喜欢混合效应模型,而从事经济学、行为金融学和战略管理学领域工作的人通常更喜欢固定效应模型。然而,日益增多的跨学科研究导致了心理学和经济学领域之间的界限变得模糊,导致研究人员遇到了其他学科中常见的不熟悉的统计方法。持续的学科特定偏好可能特别成问题,因为 (a) 每种方法都有一定的局限性,这可能会限制可以适当解决的研究问题的类型,以及 (b) 基于在一个学科中常见的统计建模决策的分析对于在替代学科中受过培训的研究人员来说可能难以理解。这可能会阻碍跨学科合作,并限制科学家适当利用相邻领域研究的能力。本文讨论了聚类数据的混合效应和固定效应模型之间的差异,回顾了每种方法,并帮助确定何时每种方法是最优的。然后,我们讨论了“个体内-个体间”的规范,即将每个框架的优势特性融合到一个单一的模型中。(PsycINFO 数据库记录(c)2019 APA,保留所有权利)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验