Suppr超能文献

多层次自回归模型中的测量误差和个体可靠性。

Measurement error and person-specific reliability in multilevel autoregressive modeling.

机构信息

Department of Methodology and Statistics.

Department of Methodology and Statistics, Faculty of Social and Behavioral Sciences, Utrecht University Utrecht.

出版信息

Psychol Methods. 2019 Feb;24(1):70-91. doi: 10.1037/met0000188. Epub 2018 Sep 6.

Abstract

An increasing number of researchers in psychology are collecting intensive longitudinal data in order to study psychological processes on an intraindividual level. An increasingly popular way to analyze these data is autoregressive time series modeling; either by modeling the repeated measures for a single individual using classic n = 1 autoregressive models, or by using multilevel extensions of these models, with the dynamics for each individual modeled at Level 1 and interindividual differences in these dynamics modeled at Level 2. However, while it is widely accepted in psychology that psychological measurements usually contain a certain amount of measurement error, the issue of measurement error is largely neglected in applied psychological (autoregressive) time series modeling: The regular autoregressive model incorporates innovations, or "dynamic errors," but not measurement error. In this article we discuss the concepts of reliability and measurement error in the context of dynamic (VAR(1)) models, and the consequences of disregarding measurement error variance in the data. For this purpose, we present a preliminary model that accounts for measurement error for constructs that are measured with a single indicator. We further discuss how this model could be used to investigate the between-person reliability of the measurements, as well as the (person-specific) within-person reliabilities and any individual differences in these reliabilities. We illustrate the consequences of assuming perfect reliability, the preliminary model, and reliabilities, using an empirical application in which we relate women's general positive affect to their positive affect concerning their romantic relationship. (PsycINFO Database Record (c) 2019 APA, all rights reserved).

摘要

越来越多的心理学研究人员正在收集密集的纵向数据,以便在个体水平上研究心理过程。分析这些数据的一种越来越流行的方法是自回归时间序列建模;要么通过使用经典的 n = 1 自回归模型对单个个体的重复测量进行建模,要么通过使用这些模型的多层次扩展,在第 1 级对每个个体的动态进行建模,在第 2 级对这些动态的个体间差异进行建模。然而,尽管心理学界广泛接受心理测量通常包含一定量的测量误差,但在应用心理学(自回归)时间序列建模中,测量误差问题在很大程度上被忽视了:常规的自回归模型包含创新或“动态误差”,但不包含测量误差。本文讨论了动态(VAR(1))模型中可靠性和测量误差的概念,以及在数据中忽略测量误差方差的后果。为此,我们提出了一个初步的模型,该模型考虑了具有单个指标测量的结构的测量误差。我们进一步讨论了如何使用此模型来研究测量的个体间可靠性,以及这些可靠性中的(个体特定的)个体内可靠性和任何个体差异。我们使用一个实证应用来说明假设完美可靠性、初步模型和可靠性的后果,在这个应用中,我们将女性的一般积极情绪与她们对浪漫关系的积极情绪联系起来。(PsycINFO 数据库记录(c)2019 APA,保留所有权利)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验