a Dipartimento Biologia e Biotecnologie "C. Darwin", SAPIENZA Università di Roma, Rome, Italy.
c Museo Storico della Fisica e Centro Studi e Ricerche "Enrico Fermi", Rome, Italy.
Radiat Res. 2018 Sep;190(3):217-225. doi: 10.1667/RR15083.1. Epub 2018 Jun 4.
Deep underground laboratories (DULs) were originally created to host particle, astroparticle or nuclear physics experiments requiring a low-background environment with vastly reduced levels of cosmic-ray particle interference. More recently, the range of science projects requiring an underground experiment site has greatly expanded, thus leading to the recognition of DULs as truly multidisciplinary science sites that host important studies in several fields, including geology, geophysics, climate and environmental sciences, technology/instrumentation development and biology. So far, underground biology experiments are ongoing or planned in a few of the currently operating DULs. Among these DULs is the Gran Sasso National Laboratory (LNGS), where the majority of radiobiological data have been collected. Here we provide a summary of the current scenario of DULs around the world, as well as the specific features of the LNGS and a summary of the results we obtained so far, together with other findings collected in different underground laboratories. In particular, we focus on the recent results from our studies of Drosophila melanogaster, which provide the first evidence of the influence of the radiation environment on life span, fertility and response to genotoxic stress at the organism level. Given the increasing interest in this field and the establishment of new projects, it is possible that in the near future more DULs will serve as sites of radiobiology experiments, thus providing further relevant biological information at extremely low-dose-rate radiation. Underground experiments can be nicely complemented with above-ground studies at increasing dose rate. A systematic study performed in different exposure scenarios provides a potential opportunity to address important radiation protection questions, such as the dose/dose-rate relationship for cancer and non-cancer risk, the possible existence of dose/dose-rate threshold(s) for different biological systems and/or end points and the possible role of radiation quality in triggering the biological response.
深地下实验室(DUL)最初是为了容纳需要低本底环境、大大减少宇宙射线粒子干扰的粒子、天体粒子或核物理实验而创建的。最近,需要地下实验场地的科学项目范围大大扩大,因此人们认识到 DUL 是真正的多学科科学场所,在地质、地球物理、气候和环境科学、技术/仪器开发以及生物学等多个领域都有重要的研究。到目前为止,一些正在运行的 DUL 中正在进行或计划进行地下生物学实验。其中一个 DUL 是格兰萨索国家实验室(LNGS),在那里收集了大部分放射生物学数据。在这里,我们提供了全球 DUL 目前的情况概述,以及 LNGS 的具体特点和我们迄今为止获得的结果总结,以及在不同地下实验室收集的其他发现。特别是,我们关注了我们对黑腹果蝇的研究结果,这些结果首次提供了辐射环境对生物体水平的寿命、生育能力和对遗传毒性应激反应的影响的证据。鉴于人们对这一领域的兴趣日益增加,以及新项目的建立,在不久的将来,更多的 DUL 将成为放射生物学实验的场所,从而在极低剂量率辐射下提供更多相关的生物学信息。地下实验可以很好地与不断增加剂量率的地上研究相补充。在不同的暴露场景中进行的系统研究为解决重要的辐射防护问题提供了一个潜在的机会,例如癌症和非癌症风险的剂量/剂量率关系、不同生物系统和/或终点的可能存在的剂量/剂量率阈值以及辐射质量在引发生物学反应中的可能作用。