Suppr超能文献

液晶弹性体致动器的微流体制备

Microfluidic Preparation of Liquid Crystalline Elastomer Actuators.

作者信息

Hessberger Tristan, Braun Lukas B, Serra Christophe A, Zentel Rudolf

机构信息

Department of Organic Chemistry, Johannes Gutenberg University.

CNRS, ICS UPR 22, Université de Strasbourg.

出版信息

J Vis Exp. 2018 May 20(135):57715. doi: 10.3791/57715.

Abstract

This paper focuses on the microfluidic process (and its parameters) to prepare actuating particles from liquid crystalline elastomers. The preparation usually consists in the formation of droplets containing low molar mass liquid crystals at elevated temperatures. Subsequently, these particle precursors are oriented in the flow field of the capillary and solidified by a crosslinking polymerization, which produces the final actuating particles. The optimization of the process is necessary to obtain the actuating particles and the proper variation of the process parameters (temperature and flow rate) and allows variations of size and shape (from oblate to strongly prolate morphologies) as well as the magnitude of actuation. In addition, it is possible to vary the type of actuation from elongation to contraction depending on the director profile induced to the droplets during the flow in the capillary, which again depends on the microfluidic process and its parameters. Furthermore, particles of more complex shapes, like core-shell structures or Janus particles, can be prepared by adjusting the setup. By the variation of the chemical structure and the mode of crosslinking (solidification) of the liquid crystalline elastomer, it is also possible to prepare actuating particles triggered by heat or UV-vis irradiation.

摘要

本文聚焦于从液晶弹性体制备驱动颗粒的微流控过程(及其参数)。制备过程通常包括在高温下形成含有低摩尔质量液晶的液滴。随后,这些颗粒前体在毛细管的流场中取向,并通过交联聚合固化,从而产生最终的驱动颗粒。该过程的优化对于获得驱动颗粒以及合理改变过程参数(温度和流速)是必要的,并且允许颗粒尺寸和形状(从扁球形到强烈的长球形形态)以及驱动幅度发生变化。此外,根据在毛细管中流动期间施加到液滴上的指向矢分布,有可能改变驱动类型,从伸长到收缩,而这又取决于微流控过程及其参数。此外,通过调整装置,可以制备更复杂形状的颗粒,如核壳结构或Janus颗粒。通过改变液晶弹性体的化学结构和交联(固化)方式,还可以制备由热或紫外 - 可见辐射触发的驱动颗粒。

相似文献

1
Microfluidic Preparation of Liquid Crystalline Elastomer Actuators.
J Vis Exp. 2018 May 20(135):57715. doi: 10.3791/57715.
2
Nanosized shape-changing colloids from liquid crystalline elastomers.
Macromol Rapid Commun. 2011 Jan 3;32(1):88-93. doi: 10.1002/marc.201000324. Epub 2010 Sep 24.
3
Actuators based on liquid crystalline elastomer materials.
Nanoscale. 2013 Jun 21;5(12):5225-40. doi: 10.1039/c3nr00037k.
5
Liquid crystalline elastomers as actuators and sensors.
Adv Mater. 2010 Aug 17;22(31):3366-87. doi: 10.1002/adma.200904059.
6
Liquid-crystalline elastomer microvalve for microfluidics.
Adv Mater. 2011 Oct 18;23(39):4526-30. doi: 10.1002/adma.201102277. Epub 2011 Sep 12.
7
Volume phase transitions of cholesteric liquid crystalline gels.
J Chem Phys. 2015 May 7;142(17):174907. doi: 10.1063/1.4919651.
8
Photoluminescent nematic liquid crystalline elastomer with a thermomechanical emission variation function.
Macromol Rapid Commun. 2014 Sep;35(18):1571-7. doi: 10.1002/marc.201400264. Epub 2014 Jul 31.
9
Localised actuation in composites containing carbon nanotubes and liquid crystalline elastomers.
Macromol Rapid Commun. 2011 Dec 15;32(24):1953-9. doi: 10.1002/marc.201100578. Epub 2011 Oct 25.
10
Magneto-responsive liquid crystalline elastomer nanocomposites as potential candidates for dynamic cell culture substrates.
Mater Sci Eng C Mater Biol Appl. 2016 Aug 1;65:369-78. doi: 10.1016/j.msec.2016.04.063. Epub 2016 Apr 20.

引用本文的文献

1
Shape-Changing Particles: From Materials Design and Mechanisms to Implementation.
Adv Mater. 2022 Jan;34(3):e2105758. doi: 10.1002/adma.202105758. Epub 2021 Nov 6.

本文引用的文献

3
4D Printed Actuators with Soft-Robotic Functions.
Macromol Rapid Commun. 2018 Mar;39(5). doi: 10.1002/marc.201700710. Epub 2017 Dec 6.
4
Reprogrammable, Reprocessible, and Self-Healable Liquid Crystal Elastomer with Exchangeable Disulfide Bonds.
ACS Appl Mater Interfaces. 2017 Sep 27;9(38):33119-33128. doi: 10.1021/acsami.7b09246. Epub 2017 Sep 15.
5
Self-Regulating Iris Based on Light-Actuated Liquid Crystal Elastomer.
Adv Mater. 2017 Aug;29(30). doi: 10.1002/adma.201701814. Epub 2017 Jun 7.
6
Liquid crystals in micron-scale droplets, shells and fibers.
J Phys Condens Matter. 2017 Apr 5;29(13):133003. doi: 10.1088/1361-648X/aa5706. Epub 2017 Feb 15.
7
Structured light enables biomimetic swimming and versatile locomotion of photoresponsive soft microrobots.
Nat Mater. 2016 Jun;15(6):647-53. doi: 10.1038/nmat4569. Epub 2016 Feb 15.
8
9
Photomobile polymer materials with crosslinked liquid-crystalline structures: molecular design, fabrication, and functions.
Angew Chem Int Ed Engl. 2014 Sep 22;53(39):10290-9. doi: 10.1002/anie.201400513. Epub 2014 Sep 4.
10
Microfluidic conceived drug loaded Janus particles in side-by-side capillaries device.
Int J Pharm. 2014 Oct 1;473(1-2):239-49. doi: 10.1016/j.ijpharm.2014.06.035. Epub 2014 Jun 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验