Madejski Gregory, Lucas Kilean, Pascut Flavius C, Webb Kevin F, McGrath James L
Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, USA.
Department of Electrical & Electronic Engineering, University of Nottingham, Nottingham NG7 2RD, UK.
Membranes (Basel). 2018 Jun 2;8(2):26. doi: 10.3390/membranes8020026.
Silicon nanomembrane technologies (NPN, pnc-Si, and others) have been used commercially as electron microscopy (EM) substrates, and as filters with nanometer-resolution size cut-offs. Combined with EM, these materials provide a platform for catching or suspending nanoscale-size structures for analysis. Usefully, the nanomembrane itself can be manufactured to achieve a variety of nanopore topographies. The size, shapes, and surfaces of nanopores will influence transport, fouling, sieving, and electrical behavior. Electron tomography (ET) techniques used to recreate nanoscale-sized structures would provide an excellent way to capture this variation. Therefore, we modified a sample holder to accept our standardized 5.4 mm × 5.4 mm silicon nanomembrane chips and imaged NPN nanomembranes (50⁻100 nm thick, 10⁻100 nm nanopore diameters) using transmission electron microscopy (TEM). After imaging and ET reconstruction using a series of freely available tools (ImageJ, TomoJ, SEG3D2, Meshlab), we used COMSOL Multiphysics™ to simulate fluid flow inside a reconstructed nanopore. The results show flow profiles with significantly more complexity than a simple cylindrical model would predict, with regions of stagnation inside the nanopores. We expect that such tomographic reconstructions of ultrathin nanopores will be valuable in elucidating the physics that underlie the many applications of silicon nanomembranes.
硅纳米膜技术(NPN、pnc-Si等)已在商业上用作电子显微镜(EM)基板,以及具有纳米分辨率尺寸截止值的过滤器。与电子显微镜相结合,这些材料为捕获或悬浮纳米级尺寸的结构以供分析提供了一个平台。有用的是,可以制造纳米膜本身以实现各种纳米孔形貌。纳米孔的尺寸、形状和表面会影响传输、污染、筛分和电学行为。用于重建纳米级尺寸结构的电子断层扫描(ET)技术将提供一种捕捉这种变化的绝佳方法。因此,我们对样品架进行了改进,以容纳我们标准化的5.4毫米×5.4毫米硅纳米膜芯片,并使用透射电子显微镜(TEM)对NPN纳米膜(厚度为50⁻100纳米,纳米孔直径为10⁻100纳米)进行成像。在使用一系列免费工具(ImageJ、TomoJ、SEG3D2、Meshlab)进行成像和ET重建后,我们使用COMSOL Multiphysics™ 来模拟重建的纳米孔内的流体流动。结果显示,流动剖面比简单的圆柱形模型预测的要复杂得多,纳米孔内存在停滞区域。我们预计,这种超薄纳米孔的断层扫描重建将有助于阐明硅纳米膜众多应用背后的物理原理。