Madejski Gregory R, Briggs Kyle, DesOrmeaux Jon-Paul, Miller Joshua J, Roussie James A, Tabard-Cossa Vincent, McGrath James L
Department of Biomedical Engineering, University of Rochester, Robert B. Goergen Hall Box 270168 Rochester, NY 14627, USA.
Department of Physics, University of Ottawa, 150 Louis-Pasteur Pvt, Ottawa, ON, K1N6N5, Canada.
Adv Mater Interfaces. 2019 Jul 23;6(14). doi: 10.1002/admi.201900684. Epub 2019 May 29.
Nanoscale preconfinement of DNA has been shown to reduce the variation of passage times through solid-state nanopores. Preconfinement has been previously achieved by forming a femtoliter-sized cavity capped with a highly porous layer of nanoporous silicon nitride (NPN). This cavity was formed by sealing a NPN nanofilter membrane against a substrate chip using water vapor delamination. Ultimately, this method of fabrication cannot keep a consistent spacing between the filter and solid-state nanopore due to thermal fluctuations and wrinkles in the membrane, nor can it be fabricated on thousands of individual devices reliably. To overcome these issues, we present a method to fabricate the femtoliter cavity monolithically, using a selective XeF etch to hollow out a polysilicon spacer sandwiched between silicon nitride layers. These monolithically fabricated cavities behave identically to their counterparts formed by vapor delamination, exhibiting similar translocation passage time variation reduction and folding suppression of DNA without requiring extensive manual assembly. The ability to form nanocavity sensors with nanometer-scale precision and to reliably manufacture them at scale using batch wafer processing techniques will find numerous applications, including motion control of polymers for single-molecule detection applications, filtering of dirty samples prior to nanopore detection, and simple fabrication of single-molecule nanobioreactors.
已证明对DNA进行纳米级预限制可减少其通过固态纳米孔的通过时间变化。预限制此前是通过形成一个飞升至大小的腔来实现的,该腔由一层高度多孔的纳米多孔氮化硅(NPN)覆盖。这个腔是通过利用水蒸气分层将NPN纳米滤膜密封在衬底芯片上形成的。最终,由于膜中的热波动和褶皱,这种制造方法无法在滤膜和固态纳米孔之间保持一致的间距,也无法在数千个单独的器件上可靠地制造。为克服这些问题,我们提出一种方法,即通过选择性XeF蚀刻来掏空夹在氮化硅层之间的多晶硅间隔层,从而整体制造飞升至大小的腔。这些整体制造的腔的行为与其通过蒸汽分层形成的对应物相同,在无需大量人工组装的情况下,展现出类似的DNA易位通过时间变化减少和折叠抑制效果。能够以纳米级精度形成纳米腔传感器并使用批量晶圆处理技术可靠地大规模制造它们,将有众多应用,包括用于单分子检测应用的聚合物运动控制、在纳米孔检测之前对脏污样品进行过滤,以及单分子纳米生物反应器的简单制造。