De Ferrari Fabio, Raja Shyamprasad N, Herland Anna, Niklaus Frank, Stemme Göran
Division of Micro and Nanosystems, KTH Royal Institute of Technology, Malvinas väg 10, Stockholm 100 44, Sweden.
Division of Nanobiotechnology, SciLifeLab, Department of Protein Science, KTH Royal Institute of Technology, Tomtebodavägen 23a, Solna 171 65, Sweden.
ACS Appl Mater Interfaces. 2025 Feb 12;17(6):9047-9058. doi: 10.1021/acsami.4c19750. Epub 2025 Jan 30.
Solid-state nanopores offer unique possibilities for biomolecule sensing; however, scalable production of sub-5 nm pores with precise diameter control remains a manufacturing challenge. In this work, we developed a scalable method to fabricate sub-5 nm nanopores in silicon (Si) nanomembranes through metal-assisted chemical etching (MACE) using gold nanoparticles. Notably, we present a previously unreported self-limiting effect that enables sub-5 nm nanopore formation from both 10 and 40 nm nanoparticles in the 12 nm thick monocrystalline device layer of a silicon-on-insulator substrate. This effect reveals distinctive etching dynamics in ultrathin Si nanomembranes, enabling precise control over nanopore dimensions. The resulting nanopore sensor, suspended over self-aligned spheroidal oxide undercuts with diameters of just a few hundred nanometers, exhibited low electrical noise and high stability due to encapsulation within dielectric layers. In DNA translocation experiments, our nanopore platform could distinguish folded and unfolded DNA conformations and maintained stable baseline conductance for up to 6 h, demonstrating both sensitivity and robustness. Our scalable nanopore fabrication method is compatible with wafer-level and batch processing and holds promise for advancing biomolecular sensing and analysis.
固态纳米孔为生物分子传感提供了独特的可能性;然而,可扩展地生产直径精确可控的亚5纳米孔仍然是一项制造挑战。在这项工作中,我们开发了一种可扩展的方法,通过使用金纳米颗粒的金属辅助化学蚀刻(MACE)在硅(Si)纳米膜中制造亚5纳米纳米孔。值得注意的是,我们展示了一种以前未报道的自限效应,该效应能够在绝缘体上硅衬底的12纳米厚单晶硅器件层中由10纳米和40纳米的纳米颗粒形成亚5纳米纳米孔。这种效应揭示了超薄硅纳米膜中独特的蚀刻动力学,能够精确控制纳米孔尺寸。所得的纳米孔传感器悬浮在直径仅为几百纳米的自对准球形氧化物底切上,由于封装在介电层内,表现出低电噪声和高稳定性。在DNA转位实验中,我们的纳米孔平台能够区分折叠和未折叠的DNA构象,并在长达6小时内保持稳定的基线电导,展示了其灵敏度和稳健性。我们可扩展的纳米孔制造方法与晶圆级和批量处理兼容,有望推动生物分子传感和分析的发展。