Suppr超能文献

使用EEGLAB和Brainstorm对脑电图数据进行源建模听觉过程

Source-Modeling Auditory Processes of EEG Data Using EEGLAB and Brainstorm.

作者信息

Stropahl Maren, Bauer Anna-Katharina R, Debener Stefan, Bleichner Martin G

机构信息

Neuropsychology Lab, Department of Psychology, European Medical School, University of Oldenburg, Oldenburg, Germany.

Cluster of Excellence Hearing4all, University of Oldenburg, Oldenburg, Germany.

出版信息

Front Neurosci. 2018 May 8;12:309. doi: 10.3389/fnins.2018.00309. eCollection 2018.

Abstract

Electroencephalography (EEG) source localization approaches are often used to disentangle the spatial patterns mixed up in scalp EEG recordings. However, approaches differ substantially between experiments, may be strongly parameter-dependent, and results are not necessarily meaningful. In this paper we provide a pipeline for EEG source estimation, from raw EEG data pre-processing using EEGLAB functions up to source-level analysis as implemented in Brainstorm. The pipeline is tested using a data set of 10 individuals performing an auditory attention task. The analysis approach estimates sources of 64-channel EEG data without the prerequisite of individual anatomies or individually digitized sensor positions. First, we show advanced EEG pre-processing using EEGLAB, which includes artifact attenuation using independent component analysis (ICA). ICA is a linear decomposition technique that aims to reveal the underlying statistical sources of mixed signals and is further a powerful tool to attenuate stereotypical artifacts (e.g., eye movements or heartbeat). Data submitted to ICA are pre-processed to facilitate good-quality decompositions. Aiming toward an objective approach on component identification, the semi-automatic CORRMAP algorithm is applied for the identification of components representing prominent and stereotypic artifacts. Second, we present a step-wise approach to estimate active sources of auditory cortex event-related processing, on a single subject level. The presented approach assumes that no individual anatomy is available and therefore the default anatomy ICBM152, as implemented in Brainstorm, is used for all individuals. Individual noise modeling in this dataset is based on the pre-stimulus baseline period. For EEG source modeling we use the OpenMEEG algorithm as the underlying forward model based on the symmetric Boundary Element Method (BEM). We then apply the method of dynamical statistical parametric mapping (dSPM) to obtain physiologically plausible EEG source estimates. Finally, we show how to perform group level analysis in the time domain on anatomically defined regions of interest (auditory scout). The proposed pipeline needs to be tailored to the specific datasets and paradigms. However, the straightforward combination of EEGLAB and Brainstorm analysis tools may be of interest to others performing EEG source localization.

摘要

脑电图(EEG)源定位方法常用于解析头皮脑电图记录中混合的空间模式。然而,不同实验中的方法差异很大,可能强烈依赖参数,且结果不一定有意义。在本文中,我们提供了一个从使用EEGLAB函数进行原始脑电图数据预处理到使用Brainstorm实现源水平分析的脑电图源估计流程。该流程使用一组10名个体执行听觉注意力任务的数据集进行了测试。该分析方法估计64通道脑电图数据的源,而无需个体解剖结构或单独数字化的传感器位置。首先,我们展示了使用EEGLAB进行的高级脑电图预处理,包括使用独立成分分析(ICA)进行伪迹衰减。ICA是一种线性分解技术,旨在揭示混合信号的潜在统计源,并且还是衰减典型伪迹(例如,眼球运动或心跳)的强大工具。提交给ICA的数据会进行预处理,以促进高质量的分解。为了实现成分识别的客观方法,应用半自动CORRMAP算法来识别代表突出和典型伪迹的成分。其次,我们提出了一种逐步方法,在单个受试者水平上估计听觉皮层事件相关处理的活跃源。所提出的方法假设没有个体解剖结构可用,因此在Brainstorm中实现的默认解剖结构ICBM152用于所有个体。该数据集中的个体噪声建模基于刺激前的基线期。对于脑电图源建模,我们使用基于对称边界元法(BEM)的OpenMEEG算法作为基础正向模型。然后,我们应用动态统计参数映射(dSPM)方法来获得生理上合理的脑电图源估计。最后,我们展示了如何在时域中对解剖学定义的感兴趣区域(听觉侦察)进行组水平分析。所提出的流程需要针对特定的数据集和范式进行调整。然而,EEGLAB和Brainstorm分析工具的直接组合可能会引起其他进行脑电图源定位的人员的兴趣。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验