Yu Haitao, Hu Zhiwen, Zhao Quanfa, Liu Jing
School of Electrical and Information Engineering, Tianjin University, Tianjin, 300072 China.
Department of Neurology, Tangshan Gongren Hospital, Tangshan, 063000 China.
Cogn Neurodyn. 2024 Dec;18(6):3507-3520. doi: 10.1007/s11571-024-10149-2. Epub 2024 Jul 15.
Electroencephalography (EEG) provides high temporal resolution neural data for brain-computer interfacing via noninvasive electrophysiological recording. Estimating the internal brain activity by means of source imaging techniques can further improve the spatial resolution of EEG and enhance the reliability of neural decoding and brain-computer interaction. In this work, we propose a novel EEG data-driven source imaging scheme for precise and efficient estimation of macroscale spatiotemporal brain dynamics across thalamus and cortical regions with deep learning methods. A deep source imaging framework with a convolutional-recurrent neural network is designed to estimate the internal brain dynamics from high-density EEG recordings. Moreover, a brain model including 210 cortical regions and 16 thalamic nuclei is established based on human brain connectome to provide synthetic training data, which manifests intrinsic characteristics of underlying brain dynamics in spontaneous, stimulation-evoked, and pathological states. Transfer learning algorithm is further applied to the trained network to reduce the dynamical differences between synthetic and realistic EEG. Extensive experiments exhibit that the proposed deep-learning method can accurately estimate the spatial and temporal activity of brain sources and achieves superior performance compared to the state-of-the-art approaches. Moreover, the EEG data-driven source imaging framework is effective in the location of seizure onset zone in epilepsy and reconstruction of dynamical thalamocortical interactions during sensory processing of acupuncture stimulation, implying its applicability in brain-computer interfacing for neuroscience research and clinical applications.
脑电图(EEG)通过非侵入性电生理记录为脑机接口提供高时间分辨率的神经数据。借助源成像技术估计大脑内部活动可以进一步提高EEG的空间分辨率,并增强神经解码和脑机交互的可靠性。在这项工作中,我们提出了一种新颖的EEG数据驱动源成像方案,用于使用深度学习方法精确高效地估计丘脑和皮质区域的宏观时空脑动力学。设计了一个带有卷积循环神经网络的深度源成像框架,以从高密度EEG记录中估计大脑内部动力学。此外,基于人类脑连接组建立了一个包含210个皮质区域和16个丘脑核的脑模型,以提供合成训练数据,该数据体现了自发、刺激诱发和病理状态下潜在脑动力学的内在特征。进一步将迁移学习算法应用于训练好的网络,以减少合成EEG与实际EEG之间的动力学差异。大量实验表明,所提出的深度学习方法可以准确估计脑源的空间和时间活动,并且与现有方法相比具有卓越的性能。此外,EEG数据驱动源成像框架在癫痫发作起始区定位以及针刺刺激感觉处理过程中丘脑皮质动态相互作用的重建方面是有效的,这意味着它在用于神经科学研究和临床应用的脑机接口中具有适用性。