Long Yuchen, Stahl Yvonne, Weidtkamp-Peters Stefanie, Smet Wouter, Du Yujuan, Gadella Theodorus W J, Goedhart Joachim, Scheres Ben, Blilou Ikram
Plant Developmental Biology, Wageningen University and Research Centre, Wageningen, Netherlands.
Institute for Developmental Genetics, Heinrich Heine University, Düsseldorf, Germany.
Front Plant Sci. 2018 May 15;9:639. doi: 10.3389/fpls.2018.00639. eCollection 2018.
Protein complex formation has been extensively studied using Förster resonance energy transfer (FRET) measured by Fluorescence Lifetime Imaging Microscopy (FLIM). However, implementing this technology to detect protein interactions in living multicellular organism at single-cell resolution and under native condition is still difficult to achieve. Here we describe the optimization of the labeling conditions to detect FRET-FLIM in living plants. This study exemplifies optimization procedure involving the identification of the optimal position for the labels either at the N or C terminal region and the selection of the bright and suitable, fluorescent proteins as donor and acceptor labels for the FRET study. With an effective optimization strategy, we were able to detect the interaction between the stem cell regulators SHORT-ROOT and SCARECROW at endogenous expression levels in the root pole of living Arabidopsis embryos and developing lateral roots by FRET-FLIM. Using this approach we show that the spatial profile of interaction between two transcription factors can be highly modulated in reoccurring and structurally resembling organs, thus providing new information on the dynamic redistribution of nuclear protein complex configurations in different developmental stages. In principle, our optimization procedure for transcription factor complexes is applicable to any biological system.
利用荧光寿命成像显微镜(FLIM)测量的Förster共振能量转移(FRET)对蛋白质复合物的形成进行了广泛研究。然而,要在原生条件下以单细胞分辨率在活的多细胞生物体中运用该技术检测蛋白质相互作用仍然难以实现。在此,我们描述了用于检测活植物中FRET-FLIM的标记条件的优化。这项研究例证了优化过程,该过程涉及确定在N端或C端区域进行标记的最佳位置,以及选择明亮且合适的荧光蛋白作为FRET研究的供体和受体标记。通过有效的优化策略,我们能够通过FRET-FLIM在活拟南芥胚胎的根极和发育中的侧根的内源性表达水平上检测干细胞调节因子SHORT-ROOT和SCARECROW之间的相互作用。使用这种方法,我们表明在反复出现且结构相似的器官中,两种转录因子之间相互作用的空间分布可以受到高度调节,从而为不同发育阶段核蛋白复合物构型的动态重新分布提供了新信息。原则上,我们针对转录因子复合物的优化程序适用于任何生物系统。