Czechowski Tomasz, Larson Tony R, Catania Theresa M, Harvey David, Wei Cenxi, Essome Michel, Brown Geoffrey D, Graham Ian A
Department of Biology, Centre for Novel Agricultural Products, University of York, York, United Kingdom.
Department of Chemistry, University of Reading, Reading, United Kingdom.
Front Plant Sci. 2018 May 18;9:641. doi: 10.3389/fpls.2018.00641. eCollection 2018.
Chemical derivatives of artemisinin, a sesquiterpene lactone produced by , are the active ingredient in the most effective treatment for malaria. Comprehensive phytochemical analysis of two contrasting chemotypes of resulted in the characterization of over 80 natural products by NMR, more than 20 of which are novel and described here for the first time. Analysis of high- and low-artemisinin producing (HAP and LAP) chemotypes of confirmed the latter to have a low level of (artemisinic aldehyde Δ reductase) gene expression. Here we show that the LAP chemotype accumulates high levels of artemisinic acid, arteannuin B, -deoxyarteannuin B and other amorpha-4,11-diene derived sesquiterpenes which are unsaturated at the 11,13-position. By contrast, the HAP chemotype is rich in sesquiterpenes saturated at the 11,13-position (dihydroartemisinic acid, artemisinin and dihydro--deoxyarteannunin B), which is consistent with higher expression levels of , and also with the presence of a HAP-chemotype version of CYP71AV1 (amorpha-4,11-diene C-12 oxidase). Our results indicate that the conversion steps from artemisinic acid to arteannuin B, -deoxyarteannuin B and artemisitene in the LAP chemotype are non-enzymatic and parallel the non-enzymatic conversion of DHAA to artemisinin and dihyro--deoxyarteannuin B in the HAP chemotype. Interestingly, artemisinic acid in the LAP chemotype preferentially converts to arteannuin B rather than the endoperoxide bridge containing artemisitene. In contrast, in the HAP chemotype, DHAA preferentially converts to artemisinin. Broader metabolomic and transcriptomic profiling revealed significantly different terpenoid profiles and related terpenoid gene expression in these two morphologically distinct chemotypes.
青蒿素是由[具体植物名称未给出]产生的一种倍半萜内酯,其化学衍生物是治疗疟疾最有效的药物中的活性成分。对[具体植物名称未给出]的两种截然不同的化学型进行全面的植物化学分析,通过核磁共振(NMR)鉴定出了80多种天然产物,其中20多种是新的,在此首次进行描述。对[具体植物名称未给出]的高青蒿素产量(HAP)和低青蒿素产量(LAP)化学型的分析证实,后者的[具体基因名称未给出](青蒿醛Δ还原酶)基因表达水平较低。我们在此表明,LAP化学型积累了高水平的青蒿酸、青蒿素B、[具体名称未给出] - 脱氧青蒿素B和其他在11、13位不饱和的amorpha - 4,11 - 二烯衍生的倍半萜。相比之下,HAP化学型富含在11、13位饱和的倍半萜(二氢青蒿酸、青蒿素和二氢 - [具体名称未给出] - 脱氧青蒿素B),这与[具体基因名称未给出]的较高表达水平一致,也与CYP71AV1(amorpha - 4,11 - 二烯C - 12氧化酶)的HAP化学型版本的存在一致。我们的结果表明,LAP化学型中从青蒿酸到青蒿素B、[具体名称未给出] - 脱氧青蒿素B和青蒿烯的转化步骤是非酶促的,并且与HAP化学型中DHAA到青蒿素和二氢 - [具体名称未给出] - 脱氧青蒿素B的非酶促转化平行。有趣的是,LAP化学型中的青蒿酸优先转化为青蒿素B,而不是含有内过氧化物桥的青蒿烯。相比之下,在HAP化学型中,DHAA优先转化为青蒿素。更广泛的代谢组学和转录组学分析揭示了这两种形态上不同的化学型中显著不同的萜类化合物谱和相关萜类基因表达。