Rayson B M, Gupta R K
J Biol Chem. 1985 Jun 25;260(12):7276-80.
Two reservations have previously made interpretation of biological 23Na NMR measurements difficult: the "size" of the extracellular space penetrated by the shift reagent and the possibility of a 60% reduction in the intensity of the NMR-visible 23Na signal due to quadrupolar interactions (Berendsen, H. J. C., and Edzes, H. T. (1973) Ann. N. Y. Acad. Sci. 204, 459-485; Civan, M. M., Degani, H., Margalit, Y., and Shporer, M. (1983) Am. J. Physiol. 245, C213-C219; Gupta, R. K., and Gupta, P. (1982) J. Magn. Reson. 47, 344-350). We have addressed both these issues using a suspension of rat outer medullary kidney tubules, nephron segments responsible for the fine control of total body volume and electrolyte balance. First, the extracellular space penetrated by the shift reagent dysprosium tripolyphosphate, as defined by the extracellular 23Na resonance, revealed a space similar to that which contained extracellular 35Cl- ions. Measurement of an extracellular 35Cl- space using 35Cl NMR was possible because the intracellular 35Cl- resonance was broadened beyond detection in the cells studied. Second, to characterize the reduction of the 23Na signal by quadrupolar interactions, the intracellular 23Na level was raised artificially by simultaneously inhibiting Na+ efflux and increasing the ion permeability of the plasma membrane. Under these conditions, NMR-observable intracellular Na+ reached a level which was approximately 81% of that in the medium, a level determined using chemical techniques. This observation would suggest that the resonance of the intracellular 23Na pool was not subject to a 60% reduction in signal intensity, as a result of nuclear quadrupolar interaction. The intracellular 23Na level measured, under basal conditions, was 23 +/- 2 mumol/ml of cell water (37 degrees C) (n = 3, S.D.) and was demonstrated to be responsive to a number of physiological stimuli. The level was temperature-sensitive. It was reduced by inhibitors of apical Na+ transport, furosemide and amiloride, and it was raised with (Na+ + K+)-ATPase inhibition. The furosemide and amiloride actions described would suggest that the Na+-transporting mechanisms sensitive to these agents (e.g. Na+/K+/Cl- cotransport system, Na+:H+ exchange system) contribute to the regulation of the intracellular Na+ level in the kidney tubular preparation studied.
此前有两个问题使得对生物 23Na NMR 测量结果的解读变得困难:位移试剂所穿透的细胞外空间的“大小”,以及由于四极相互作用导致 NMR 可见的 23Na 信号强度可能降低 60%(贝伦森,H. J. C.,和埃兹斯,H. T.(1973 年)《纽约科学院学报》204 卷,459 - 485 页;西万,M. M.,德加尼,H.,马加利特,Y.,和什波勒,M.(1983 年)《美国生理学杂志》245 卷,C213 - C219 页;古普塔,R. K.,和古普塔,P.(1982 年)《磁共振杂志》47 卷,344 - 350 页)。我们利用大鼠外髓肾小管所形成的悬浮液解决了这两个问题,肾单位节段负责精确控制总体液量和电解质平衡。首先,由细胞外 23Na 共振所定义的、被位移试剂三聚磷酸镝穿透的细胞外空间,显示出一个与含有细胞外 35Cl - 离子的空间相似的空间。使用 35Cl NMR 测量细胞外 35Cl - 空间是可行的,因为在所研究的细胞中,细胞内 35Cl - 共振展宽到无法检测。其次,为了表征四极相互作用导致的 23Na 信号减弱,通过同时抑制 Na + 外流并增加质膜的离子通透性来人为提高细胞内 23Na 水平。在这些条件下,NMR 可观测到的细胞内 Na + 达到了培养基中 Na + 水平的约 81%,这一水平是使用化学技术测定的。这一观察结果表明,细胞内 23Na 池的共振不会因核四极相互作用而使信号强度降低 60%。在基础条件下测量的细胞内 23Na 水平为 23 ± 2 μmol/ml 细胞水(37℃)(n = 3,标准差),并且已证明其对多种生理刺激有反应。该水平对温度敏感。它会被顶端 Na + 转运抑制剂呋塞米和阿米洛利降低,并且会因(Na + + K +)-ATP 酶抑制而升高。所描述的呋塞米和阿米洛利的作用表明,对这些药物敏感的 Na + 转运机制(例如 Na + /K + /Cl - 共转运系统、Na + :H + 交换系统)有助于调节所研究的肾小管制剂中的细胞内 Na + 水平。