Suppr超能文献

基于最近相关性的软传感器设计输入变量加权

Nearest Correlation-Based Input Variable Weighting for Soft-Sensor Design.

作者信息

Fujiwara Koichi, Kano Manabu

机构信息

Department of Systems Science, Kyoto University, Kyoto, Japan.

出版信息

Front Chem. 2018 May 22;6:171. doi: 10.3389/fchem.2018.00171. eCollection 2018.

Abstract

In recent years, soft-sensors have been widely used for estimating product quality or other important variables when online analyzers are not available. In order to construct a highly accurate soft-sensor, appropriate data preprocessing is required. In particular, the selection of input variables or input features is one of the most important techniques for improving estimation performance. Fujiwara et al. proposed a variable selection method, in which variables are clustered into variable groups based on the correlation between variables by nearest correlation spectral clustering (NCSC), and each variable group is examined as to whether or not it should be used as input variables. This method is called NCSC-based variable selection (NCSC-VS). However, these NCSC-based methods have a lot of parameters to be tuned, and their joint optimization is burdensome. The present work proposes an effective input variable weighting method to be used instead of variable selection to conserve labor required for parameter tuning. The proposed method, referred to herein as NC-based variable weighting (NCVW), searches input variables that have the correlation with the output variable by using the NC method and calculates the correlation similarity between the input variables and output variable. The input variables are weighted based on the calculated correlation similarities, and the weighted input variables are used for model construction. There is only one parameter in the proposed NCVW since the NC method has one tuning parameter. Thus, it is easy for NCVW to develop a soft-sensor. The usefulness of the proposed NCVW is demonstrated through an application to calibration model design in a pharmaceutical process.

摘要

近年来,当在线分析仪不可用时,软传感器已被广泛用于估计产品质量或其他重要变量。为了构建高精度的软传感器,需要进行适当的数据预处理。特别是,输入变量或输入特征的选择是提高估计性能的最重要技术之一。藤原等人提出了一种变量选择方法,其中通过最近相关谱聚类(NCSC)基于变量之间的相关性将变量聚类为变量组,并检查每个变量组是否应用作输入变量。该方法称为基于NCSC的变量选择(NCSC-VS)。然而,这些基于NCSC的方法有许多参数需要调整,并且它们的联合优化很繁琐。本工作提出了一种有效的输入变量加权方法,以代替变量选择,以节省参数调整所需的工作量。所提出的方法,在此称为基于NC的变量加权(NCVW),通过使用NC方法搜索与输出变量具有相关性的输入变量,并计算输入变量与输出变量之间的相关相似度。基于计算出的相关相似度对输入变量进行加权,并将加权后的输入变量用于模型构建。由于NC方法有一个调整参数,因此所提出的NCVW中只有一个参数。因此,NCVW很容易开发软传感器。通过在制药过程中的校准模型设计应用,证明了所提出的NCVW的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f454/5972637/2f01f62a1b6c/fchem-06-00171-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验