Suppr超能文献

基于混合 ICS-MLSSVM 的 L-赖氨酸发酵过程软测量建模。

Soft-sensor modeling for L-lysine fermentation process based on hybrid ICS-MLSSVM.

机构信息

School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.

School of Computer Science and Communication Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.

出版信息

Sci Rep. 2020 Jul 15;10(1):11630. doi: 10.1038/s41598-020-68081-4.

Abstract

The L-lysine fermentation process is a complex, nonlinear, dynamic biochemical reaction process with multiple inputs and multiple outputs. There is a complex nonlinear dynamic relationship between each state variable. Some key variables in the fermentation process that directly reflect the quality of the fermentation cannot be measured online in real-time which greatly limits the application of advanced control technology in biochemical processes. This work introduces a hybrid ICS-MLSSVM soft-sensor modeling method to realize the online detection of key biochemical variables (cell concentration, substrate concentration, product concentration) of the L-lysine fermentation process. First of all, a multi-output least squares support vector machine regressor (MLSSVM) model is constructed based on the multi-input and multi-output characteristics of L-lysine fermentation process. Then, important parameters ([Formula: see text], [Formula: see text], [Formula: see text]) of MLSSVM model are optimized by using the Improved Cuckoo Search (ICS) optimization algorithm. In the end, the hybrid ICS-MLSSVM soft-sensor model is developed by using optimized model parameter values, and the key biochemical variables of the L-lysine fermentation process are realized online. The simulation results confirm that the proposed regression model can accurately predict the key biochemical variables. Furthermore, the hybrid ICS-MLSSVM soft-sensor model is better than the MLSSVM soft-sensor model based on standard CS (CS-MLSSVM), particle swarm optimization (PSO) algorithm (PSO-MLSSVM) and genetic algorithm (GA-MLSSVM) in prediction accuracy and adaptability.

摘要

赖氨酸发酵过程是一个复杂的、非线性的、动态的生化反应过程,具有多个输入和多个输出。各状态变量之间存在复杂的非线性动态关系。发酵过程中的一些关键变量不能在线实时测量,这极大地限制了先进控制技术在生化过程中的应用。本工作提出了一种混合 ICS-MLSSVM 软测量建模方法,实现了赖氨酸发酵过程中关键生化变量(细胞浓度、基质浓度、产物浓度)的在线检测。首先,基于赖氨酸发酵过程的多输入多输出特点,构建了多输出最小二乘支持向量机回归器(MLSSVM)模型。然后,利用改进的布谷鸟搜索(ICS)优化算法对 MLSSVM 模型的重要参数([公式:见文本]、[公式:见文本]、[公式:见文本])进行优化。最后,利用优化后的模型参数值,开发了混合 ICS-MLSSVM 软测量模型,实现了赖氨酸发酵过程的关键生化变量的在线检测。仿真结果证实了所提出的回归模型能够准确预测关键生化变量。此外,与标准布谷鸟搜索(CS)算法(CS-MLSSVM)、粒子群优化(PSO)算法(PSO-MLSSVM)和遗传算法(GA-MLSSVM)相比,混合 ICS-MLSSVM 软测量模型在预测精度和适应性方面均具有优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60af/7363823/ad580508fc12/41598_2020_68081_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验