Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito exterior s/n, Cd. Universitaria, Del. Coyoacán C.P, 04510, Ciudad de México, Mexico.
Environ Sci Pollut Res Int. 2019 Oct;26(29):29532-29543. doi: 10.1007/s11356-018-2444-x. Epub 2018 Jun 5.
LiCuO and different iron-containing LiCuO samples were synthesized by solid state reaction. On iron-containing samples, atomic sites of copper are substituted by iron ions in the lattice (XRD and Rietveld analyses). Iron addition induces copper release from LiCuO, which produce cationic vacancies and CuO, due to copper (Cu) and iron (Fe) valence differences. Two different physicochemical conditions were used for analyzing CO capture on these samples; (i) high temperature and (ii) low temperature in presence of water vapor. At high temperatures, iron addition increased CO chemisorption, due to structural and chemical variations on LiCuO. Kinetic analysis performed by first order reaction and Eyring models evidenced that iron addition on LiCuO induced a faster CO chemisorption but a higher thermal dependence. Conversely, CO chemisorption at low temperature in water vapor presence practically did not vary by iron addition, although hydration and hydroxylation processes were enhanced. Moreover, under these physicochemical conditions the whole sorption process became slower on iron-containing samples, due to metal oxides presence.
LiCuO 和不同含铁的 LiCuO 样品通过固相反应合成。在含铁的样品中,晶格中的铜原子位被铁离子取代(XRD 和 Rietveld 分析)。铁的加入导致 LiCuO 中的铜释放,由于铜(Cu)和铁(Fe)的价态差异,产生了阳离子空位和 CuO。在两种不同的物理化学条件下分析了这些样品对 CO 的捕获:(i)高温和(ii)存在水蒸气时的低温。在高温下,由于 LiCuO 的结构和化学变化,铁的加入增加了 CO 的化学吸附。通过一级反应和 Eyring 模型进行的动力学分析表明,铁的加入促使 CO 化学吸附更快,但热依赖性更高。相反,在存在水蒸气的低温下,CO 的化学吸附几乎不受铁的加入影响,尽管水合和羟基化过程得到了增强。此外,在这些物理化学条件下,由于金属氧化物的存在,整个吸附过程在含铁样品上变得更慢。