Suppr超能文献

用于模拟经生物活性水凝胶处理后的关节软骨再生的活体成像流生物反应器。

Live imaging flow bioreactor for the simulation of articular cartilage regeneration after treatment with bioactive hydrogel.

机构信息

The Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel.

Regenerative Medicine and Stem Cell (RMSC) Research Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel.

出版信息

Biotechnol Bioeng. 2018 Sep;115(9):2205-2216. doi: 10.1002/bit.26736. Epub 2018 Jun 25.

Abstract

Osteochondral defects (OCDs) are conditions affecting both cartilage and the underlying bone. Since cartilage is not spontaneously regenerated, our group has recently developed a strategy of injecting bioactive alginate hydrogel into the defect for promoting endogenous regeneration of cartilage via presentation of affinity-bound transforming growth factor β1 (TGF-β1). As in vivo model systems often provide only limited insights as for the mechanism behind regeneration processes, here we describe a novel flow bioreactor for the in vitro modeling of the OCD microenvironment, designed to promote cell recruitment from the simulated bone marrow compartment into the hydrogel, under physiological flow conditions. Computational fluid dynamics modeling confirmed that the bioreactor operates in a relevant slow-flowing regime. Using a chemotaxis assay, it was shown that TGF-β1 does not affect human mesenchymal stem cell (hMSC) chemotaxis in 2D culture. Accessible through live imaging, the bioreactor enabled monitoring and discrimination between erosion rates and profiles of different alginate hydrogel compositions, using green fluorescent protein-expressing cells. Mathematical modeling of the erosion front progress kinetics predicted the erosion rate in the bioreactor up to 7 days postoperation. Using quantitative real-time polymerase chain reaction of early chondrogenic markers, the onset of chondrogenic differentiation in hMSCs was detected after 7 days in the bioreactor. In conclusion, the designed bioreactor presents multiple attributes, making it an optimal device for mechanistical studies, serving as an investigational tool for the screening of other biomaterial-based, tissue engineering strategies.

摘要

骨软骨缺损(OCDs)是一种同时影响软骨和其下骨骼的疾病。由于软骨不能自发再生,我们的团队最近开发了一种策略,即将生物活性藻酸盐水凝胶注射到缺损部位,通过呈现亲和结合的转化生长因子β1(TGF-β1)来促进软骨的内源性再生。由于体内模型系统通常仅能提供对再生过程背后机制的有限见解,因此在这里,我们描述了一种新颖的用于 OCD 微环境体外模拟的流动生物反应器,旨在促进细胞从模拟骨髓腔募集到水凝胶中,同时在生理流动条件下运行。计算流体动力学模型证实,该生物反应器在相关的低速流动状态下运行。通过趋化性测定,结果表明 TGF-β1 不会影响二维培养中的人骨髓间充质干细胞(hMSC)趋化性。通过实时成像,可以监测和区分不同藻酸盐水凝胶组成的侵蚀速率和轮廓,使用表达绿色荧光蛋白的细胞。侵蚀前沿进展动力学的数学模型预测了生物反应器中术后 7 天的侵蚀速率。通过实时聚合酶链反应对早期软骨形成标志物进行定量分析,在生物反应器中培养 7 天后,检测到 hMSC 开始软骨分化。总之,所设计的生物反应器具有多种特性,使其成为机械研究的理想设备,并作为筛选其他基于生物材料的组织工程策略的研究工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验