Suppr超能文献

包含空心 FeO 纳米棒/CNT 构建块的三维多孔微球,具有优异的锂离子电池电化学性能。

Three-dimensional porous microspheres comprising hollow FeO nanorods/CNT building blocks with superior electrochemical performance for lithium ion batteries.

机构信息

Department of Materials Science and Engineering, Korea University, Anam-Dong, Seongbuk-Gu, Seoul 136-713, Republic of Korea.

出版信息

Nanoscale. 2018 Jun 14;10(23):11150-11157. doi: 10.1039/c8nr02686f.

Abstract

It is highly desirable to develop anode materials with rational architectures for lithium ion batteries to achieve high-performance electrochemical properties. In this study, three-dimensional porous composite microspheres comprising hollow Fe2O3 nanorods/carbon nanotube (CNT) building blocks are successfully constructed by direct deposition and further thermal transformation of beta-FeOOH nanorods on CNT porous microspheres. The CNT porous microsphere, which is prepared by a spray pyrolysis, provides ample sites for the direct growth of beta-FeOOH nanorods. During the further oxidation process, the beta-FeOOH nanorods are transformed into hollow Fe2O3 nanorods as a result of dehydroxylation and lattice shrinkage, resulting in the formation of hollow Fe2O3 nanorods/CNT porous microspheres. Such a hierarchical structure of composite microspheres not only facilitates electrolyte accessibility but also offers conductive networks for electrons during electrochemical reactions. Accordingly, the electrodes exhibit a high discharge capacity of 1307 mA h g-1 after 300 cycles at a current density of 1 A g-1; this is associated with an excellent capacity retention of 84%, which is calculated from the initial cycle. In addition, the composite delivers a discharge capacity of 703 mA h g-1 at a current density of 15 A g-1.

摘要

为了实现高性能的电化学性能,开发具有合理结构的锂离子电池的阳极材料是非常可取的。在这项研究中,通过在 CNT 多孔微球上直接沉积和进一步热转化β-FeOOH 纳米棒,成功地构建了由空心 Fe2O3 纳米棒/碳纳米管(CNT)构建块组成的三维多孔复合微球。通过喷雾热解法制备的 CNT 多孔微球为β-FeOOH 纳米棒的直接生长提供了充足的位点。在进一步的氧化过程中,β-FeOOH 纳米棒由于脱水和晶格收缩而转化为空心 Fe2O3 纳米棒,从而形成空心 Fe2O3 纳米棒/CNT 多孔微球。这种复合微球的分层结构不仅有利于电解质的可及性,而且在电化学反应中为电子提供了导电网络。因此,在 1 A g-1 的电流密度下循环 300 次后,电极的放电容量高达 1307 mA h g-1;这与初始循环计算得出的 84%的优异容量保持率相关。此外,该复合材料在 15 A g-1 的电流密度下可提供 703 mA h g-1 的放电容量。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验