Park Jinseok, Kim Jungmin, Jung Dae Soo, Phiri Isheunesu, Bae Hyeon-Su, Hong Jinseok, Kim Sojin, Lee Young-Gi, Ryou Myung-Hyun, Lee Kyubock
Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea.
Department of Chemical and Biological Engineering, Hanbat National University, 125 Dongseo-daero, Yuseong-gu, Daejeon 34158, Korea.
Nanomaterials (Basel). 2020 Oct 20;10(10):2074. doi: 10.3390/nano10102074.
A method of microalgae-templated spray drying to develop hierarchical porous FeO/C composite microspheres as anode materials for Li-ion batteries was developed. During the spray-drying process, individual microalgae serve as building blocks of raspberry-like hollow microspheres via self-assembly. In the present study, microalgae-derived carbon matrices, naturally doped heteroatoms, and hierarchical porous structural features synergistically contributed to the high electrochemical performance of the FeO/C composite microspheres, enabling a discharge capacity of 1375 mA·h·g after 700 cycles at a current density of 1 A/g. Notably, the microalgal frameworks of the FeO/C composite microspheres were maintained over the course of charge/discharge cycling, thus demonstrating the structural stability of the composite microspheres against pulverization. In contrast, the sample fabricated without microalgal templating showed significant capacity drops (up to ~40% of initial capacity) during the early cycles. Clearly, templating of microalgae endows anode materials with superior cycling stability.
开发了一种以微藻为模板的喷雾干燥方法,用于制备具有分级多孔结构的FeO/C复合微球作为锂离子电池的负极材料。在喷雾干燥过程中,单个微藻通过自组装成为覆盆子状中空微球的构建单元。在本研究中,微藻衍生的碳基质、天然掺杂的杂原子和分级多孔结构特征协同作用,使FeO/C复合微球具有高电化学性能,在1 A/g的电流密度下循环700次后放电容量达到1375 mA·h·g。值得注意的是,FeO/C复合微球的微藻骨架在充放电循环过程中得以保持,从而证明了复合微球在抗粉化方面的结构稳定性。相比之下,未采用微藻模板制备的样品在早期循环中出现了显著的容量下降(高达初始容量的约40%)。显然,微藻模板赋予负极材料优异的循环稳定性。