Suppr超能文献

以微藻为模板的喷雾干燥法制备用于锂离子电池负极材料的分级多孔FeO/C复合微球

Microalgae-Templated Spray Drying for Hierarchical and Porous FeO/C Composite Microspheres as Li-ion Battery Anode Materials.

作者信息

Park Jinseok, Kim Jungmin, Jung Dae Soo, Phiri Isheunesu, Bae Hyeon-Su, Hong Jinseok, Kim Sojin, Lee Young-Gi, Ryou Myung-Hyun, Lee Kyubock

机构信息

Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea.

Department of Chemical and Biological Engineering, Hanbat National University, 125 Dongseo-daero, Yuseong-gu, Daejeon 34158, Korea.

出版信息

Nanomaterials (Basel). 2020 Oct 20;10(10):2074. doi: 10.3390/nano10102074.

Abstract

A method of microalgae-templated spray drying to develop hierarchical porous FeO/C composite microspheres as anode materials for Li-ion batteries was developed. During the spray-drying process, individual microalgae serve as building blocks of raspberry-like hollow microspheres via self-assembly. In the present study, microalgae-derived carbon matrices, naturally doped heteroatoms, and hierarchical porous structural features synergistically contributed to the high electrochemical performance of the FeO/C composite microspheres, enabling a discharge capacity of 1375 mA·h·g after 700 cycles at a current density of 1 A/g. Notably, the microalgal frameworks of the FeO/C composite microspheres were maintained over the course of charge/discharge cycling, thus demonstrating the structural stability of the composite microspheres against pulverization. In contrast, the sample fabricated without microalgal templating showed significant capacity drops (up to ~40% of initial capacity) during the early cycles. Clearly, templating of microalgae endows anode materials with superior cycling stability.

摘要

开发了一种以微藻为模板的喷雾干燥方法,用于制备具有分级多孔结构的FeO/C复合微球作为锂离子电池的负极材料。在喷雾干燥过程中,单个微藻通过自组装成为覆盆子状中空微球的构建单元。在本研究中,微藻衍生的碳基质、天然掺杂的杂原子和分级多孔结构特征协同作用,使FeO/C复合微球具有高电化学性能,在1 A/g的电流密度下循环700次后放电容量达到1375 mA·h·g。值得注意的是,FeO/C复合微球的微藻骨架在充放电循环过程中得以保持,从而证明了复合微球在抗粉化方面的结构稳定性。相比之下,未采用微藻模板制备的样品在早期循环中出现了显著的容量下降(高达初始容量的约40%)。显然,微藻模板赋予负极材料优异的循环稳定性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2d63/7589054/b71504502201/nanomaterials-10-02074-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验