Department of Energy Science, Sungkyunkwan University (SKKU), Suwon 16419, Korea.
Nanoscale. 2018 Jun 14;10(23):10856-10862. doi: 10.1039/c8nr03570a.
Direct current (DC) and low-frequency (LF) noise analyses of a chemical vapor deposition (CVD)-grown monolayer MoS2 field effect transistor (FET) indicate that time-varying carrier perturbations originate from gas adsorbates. The LF noise analysis supports that the natural desorption of physisorbed gas molecules, water and oxygen, largely reduces the interface trap density (NST) under vacuum conditions (∼10-8 Torr) for 2 weeks. After a longer period of 8 months under vacuum, the carrier scattering mechanism alters, in particular for the low carrier density (Nacc) region. A decrease of both NST and the scattering parameter αSC with desorption of surface adsorbates from MoS2, explains the enhanced carrier mobility and the early turn-on of the device. The stabilized carrier behavior is verified with γ = 0.5 in the formula αSC ∝ Nacc-γ, as in Si-MOSFETs. Our results support that the gas adsorbates work as charged impurities, rather than neutral ones.
直流(DC)和低频(LF)噪声分析表明,化学气相沉积(CVD)生长的单层 MoS2 场效应晶体管(FET)中的载流子时变波动源于气体吸附物。低频噪声分析表明,在真空条件下(约 10-8 托),物理吸附的水分子和氧气等气体分子的自然解吸在 2 周内大大降低了界面陷阱密度(NST)。在真空下经过更长的 8 个月后,载流子散射机制发生变化,特别是在低载流子密度(Nacc)区域。MoS2 表面吸附物的解吸导致 NST 和散射参数αSC 的降低,解释了载流子迁移率的提高和器件的早期导通。公式αSC∝Nacc-γ中的γ=0.5 表明载流子行为稳定,这与 Si-MOSFET 中的情况相同。我们的结果表明,气体吸附物起带电杂质的作用,而不是中性杂质。