Suppr超能文献

三种定位于不同脉序的胞质谷氨酰胺合成酶同工型共同作用于氮的再动员和拟南芥种子灌浆。

Three cytosolic glutamine synthetase isoforms localized in different-order veins act together for N remobilization and seed filling in Arabidopsis.

机构信息

Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France.

Université de Versailles Saint Quentin en Yvelines, Université Paris Saclay, Versailles, France.

出版信息

J Exp Bot. 2018 Aug 14;69(18):4379-4393. doi: 10.1093/jxb/ery217.

Abstract

Glutamine synthetase (GS) is central for ammonium assimilation and consists of cytosolic (GS1) and chloroplastic (GS2) isoenzymes. During plant ageing, GS2 protein decreases due to chloroplast degradation, and GS1 activity increases to support glutamine biosynthesis and N remobilization from senescing leaves. The role of the different Arabidopsis GS1 isoforms in nitrogen remobilization was examined using 15N tracing experiments. Only the gln1;1-gln1;2-gln1;3 triple-mutation affecting the three GLN1;1, GLN1;2, and GLN1;3 genes significantly reduced N remobilization, total seed yield, individual seed weight, harvest index, and vegetative biomass. The triple-mutant accumulated a large amount of ammonium that could not be assimilated by GS1. Alternative ammonium assimilation through asparagine biosynthesis was increased and was related to higher ASN2 asparagine synthetase transcript levels. The GS2 transcript, protein, and activity levels were also increased to compensate for the lack of GS1-related glutamine biosynthesis. Localization of the different GLN1 genes showed that they were all expressed in the phloem companion cells but in veins of different order. Our results demonstrate that glutamine biosynthesis for N-remobilization occurs in veins of all orders (major and minor) in leaves, it is mainly catalysed by the three major GS1 isoforms (GLN1;1, GLN1;2, and GLN1;3), and it is alternatively supported by AS2 in the veins and GS2 in the mesophyll cells.

摘要

谷氨酰胺合成酶(GS)是氨同化的核心,由细胞质(GS1)和叶绿体(GS2)同工酶组成。在植物衰老过程中,由于叶绿体降解,GS2 蛋白减少,GS1 活性增加,以支持谷氨酸合成和衰老叶片中氮的再利用。通过 15N 示踪实验研究了不同拟南芥 GS1 同工型在氮再利用中的作用。只有影响 GLN1;1、GLN1;2 和 GLN1;3 三个基因的 gln1;1-gln1;2-gln1;3 三重突变显著降低了氮再利用、总种子产量、单粒重、收获指数和营养生物量。三重突变体积累了大量的铵,无法被 GS1 同化。通过天冬酰胺合成的替代氨同化增加,并与较高的 ASN2 天冬酰胺合成酶转录水平有关。GS2 转录本、蛋白和活性水平也增加,以补偿 GS1 相关的谷氨酸合成减少。不同 GLN1 基因的定位表明,它们都在韧皮部伴胞中表达,但在不同级别的叶脉中表达。我们的结果表明,氮再利用的谷氨酰胺合成发生在叶片所有级别的叶脉中(主脉和侧脉),主要由三个主要的 GS1 同工型(GLN1;1、GLN1;2 和 GLN1;3)催化,在叶脉中由 AS2 替代支持,在叶肉细胞中由 GS2 支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab8d/6093384/f6858d3220b7/ery21701.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验