Suppr超能文献

两种胞质谷氨酰胺合成酶同工酶对拟南芥根中铵同化的贡献。

Contributions of two cytosolic glutamine synthetase isozymes to ammonium assimilation in Arabidopsis roots.

作者信息

Konishi Noriyuki, Ishiyama Keiki, Beier Marcel Pascal, Inoue Eri, Kanno Keiichi, Yamaya Tomoyuki, Takahashi Hideki, Kojima Soichi

机构信息

Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Sendai, Japan.

RIKEN Plant Science Center, Yokohama, Japan.

出版信息

J Exp Bot. 2017 Jan 1;68(3):613-625. doi: 10.1093/jxb/erw454.

Abstract

Glutamine synthetase (GS) catalyzes a reaction that incorporates ammonium into glutamate and yields glutamine in the cytosol and chloroplasts. Although the enzymatic characteristics of the GS1 isozymes are well known, their physiological functions in ammonium assimilation and regulation in roots remain unclear. In this study we show evidence that two cytosolic GS1 isozymes (GLN1;2 and GLN1;3) contribute to ammonium assimilation in Arabidopsis roots. Arabidopsis T-DNA insertion lines for GLN1;2 and GLN1;3 (i.e. gln1;2 and gln1;3 single-mutants), the gln1;2:gln1;3 double-mutant, and the wild-type accession (Col-0) were grown in hydroponic culture with variable concentrations of ammonium to compare their growth, and their content of nitrogen, carbon, ammonium, and amino acids. GLN1;2 and GLN1;3 promoter-dependent green fluorescent protein was observed under conditions with or without ammonium supply. Loss of GLN1;2 caused significant suppression of plant growth and glutamine biosynthesis under ammonium-replete conditions. In contrast, loss of GLN1;3 caused slight defects in growth and Gln biosynthesis that were only visible based on a comparison of the gln1;2 single- and gln1;2:gln1;3 double-mutants. GLN1;2, being the most abundantly expressed GS1 isozyme, markedly increased following ammonium supply and its promoter activity was localized at the cortex and epidermis, while GLN1;3 showed only low expression at the pericycle, suggesting their different physiological contributions to ammonium assimilation in roots. The GLN1;2 promoter-deletion analysis identified regulatory sequences required for controlling ammonium-responsive gene expression of GLN1;2 in Arabidopsis roots. These results shed light on GLN1 isozyme-specific regulatory mechanisms in Arabidopsis that allow adaptation to an ammonium-replete environment.

摘要

谷氨酰胺合成酶(GS)催化一种反应,该反应将铵整合到谷氨酸中,并在细胞质和叶绿体中生成谷氨酰胺。尽管GS1同工酶的酶学特性已为人熟知,但其在根部铵同化和调节中的生理功能仍不清楚。在本研究中,我们提供证据表明,两种细胞质GS1同工酶(GLN1;2和GLN1;3)有助于拟南芥根部的铵同化。将GLN1;2和GLN1;3的拟南芥T-DNA插入系(即gln1;2和gln1;3单突变体)、gln1;2:gln1;3双突变体和野生型种质(Col-0)在含有不同浓度铵的水培条件下培养,以比较它们的生长情况以及氮、碳、铵和氨基酸的含量。在有或无铵供应的条件下观察了GLN1;2和GLN1;3启动子依赖性绿色荧光蛋白。在铵充足的条件下,GLN1;2的缺失导致植物生长和谷氨酰胺生物合成受到显著抑制。相比之下,GLN1;3的缺失导致生长和谷氨酰胺生物合成出现轻微缺陷,这仅在比较gln1;2单突变体和gln1;2:gln1;3双突变体时才可见。GLN1;2是表达最丰富的GS1同工酶,在铵供应后显著增加,其启动子活性定位于皮层和表皮,而GLN1;3仅在中柱鞘处表现出低表达,这表明它们在根部铵同化中的生理贡献不同。GLN1;2启动子缺失分析确定了拟南芥根部控制GLN1;2铵响应基因表达所需的调控序列。这些结果揭示了拟南芥中GLN1同工酶特异性调控机制,使其能够适应铵充足的环境。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/44f7/5441914/59b10a4f082f/erw45401.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验