Ying Wen, Cai Jingsong, Zhou Ke, Chen Danke, Ying Yulong, Guo Yi, Kong Xueqian, Xu Zhiping, Peng Xinsheng
Applied Mechanics Laboratory, Department of Engineering Mechanics and Center for Nano and Micro Mechanics , Tsinghua University , Beijing 100084 , China.
ACS Nano. 2018 Jun 26;12(6):5385-5393. doi: 10.1021/acsnano.8b00367. Epub 2018 Jun 8.
Membrane separation of CO from H, N, or CH has economic benefits. However, the trade-off between selectivity and permanence in membrane separation is challenging. Here, we prepared a high-performance CO-philic membrane by confining the [BMIM][BF] ionic liquid to the nanochannels in a laminated graphene oxide membrane. Nanoconfinement causes the [BMIM][BF] cations and anions to stratify. The layered anions facilitate CO transportation with a permeance of 68.5 GPU. The CO/H, CO/CH, and CO/N selectivities are 24, 234, and 382, respectively, which are up to 7 times higher than that of GO-based membranes and superior to the 2008 Robeson upper bound. Additionally, the resultant membrane has a high-temperature resistance, long-term durability, and high-pressure stability, indicating its great potential for CO separation applications. Nanoconfining an ionic liquid into the two-dimensional nanochannels of a laminated membrane is a promising gas separation method and a nice system for investigating ionic liquid behavior in nanoconfined environments.
从氢气、氮气或甲烷中通过膜分离一氧化碳具有经济效益。然而,膜分离中选择性和持久性之间的权衡具有挑战性。在此,我们通过将[BMIM][BF]离子液体限制在层状氧化石墨烯膜的纳米通道中制备了一种高性能的亲一氧化碳膜。纳米限域导致[BMIM][BF]阳离子和阴离子分层。分层的阴离子促进一氧化碳传输,渗透率为68.5 GPU。一氧化碳/氢气、一氧化碳/甲烷和一氧化碳/氮气的选择性分别为24、234和382,分别比基于氧化石墨烯的膜高出7倍,且优于2008年的罗伯逊上限。此外,所得膜具有耐高温性、长期耐久性和高压稳定性,表明其在一氧化碳分离应用中具有巨大潜力。将离子液体纳米限域到层状膜的二维纳米通道中是一种很有前景的气体分离方法,也是研究离子液体在纳米限域环境中行为的良好体系。