Division of Biostatistics, University of Minnesota, Minneapolis, MN, 55455, USA.
Department of Finance and Statistical Analysis, Alberta School of Business, University of Alberta, Edmonton, AB, T6G 2R6, Canada.
Neuroimage. 2018 Sep;178:687-701. doi: 10.1016/j.neuroimage.2018.05.071. Epub 2018 Jun 4.
Many neuroimaging studies collect functional magnetic resonance imaging (fMRI) data in a longitudinal manner. However, the current fMRI literature lacks a general framework for analyzing functional connectivity (FC) networks in fMRI data obtained from a longitudinal study. In this work, we build a novel longitudinal FC model using a variance components approach. First, for all subjects' visits, we account for the autocorrelation inherent in the fMRI time series data using a non-parametric technique. Second, we use a generalized least squares approach to estimate 1) the within-subject variance component shared across the population, 2) the baseline FC strength, and 3) the FC's longitudinal trend. Our novel method for longitudinal FC networks seeks to account for the within-subject dependence across multiple visits, the variability due to the subjects being sampled from a population, and the autocorrelation present in fMRI time series data, while restricting the number of parameters in order to make the method computationally feasible and stable. We develop a permutation testing procedure to draw valid inference on group differences in the baseline FC network and change in FC over longitudinal time between a set of patients and a comparable set of controls. To examine performance, we run a series of simulations and apply the model to longitudinal fMRI data collected from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Overall, we found no difference in the global FC network between Alzheimer's disease patients and healthy controls, but did find differing local aging patterns in the FC between the left hippocampus and the posterior cingulate cortex.
许多神经影像学研究以纵向方式收集功能磁共振成像 (fMRI) 数据。然而,目前的 fMRI 文献缺乏一个用于分析从纵向研究中获得的 fMRI 数据中功能连接 (FC) 网络的通用框架。在这项工作中,我们使用方差分量方法构建了一个新的纵向 FC 模型。首先,对于所有受试者的就诊,我们使用非参数技术来解释 fMRI 时间序列数据中固有的自相关。其次,我们使用广义最小二乘法来估计 1)跨人群共享的个体内方差分量,2)基线 FC 强度,以及 3)FC 的纵向趋势。我们的纵向 FC 网络新方法旨在解释多次就诊时的个体内依赖性、从人群中抽样的受试者的变异性以及 fMRI 时间序列数据中的自相关,同时限制参数数量以使方法具有计算可行性和稳定性。我们开发了一种置换检验程序,以便对一组患者和一组可比对照组之间的基线 FC 网络和 FC 在纵向时间上的变化进行组间差异的有效推断。为了检验性能,我们进行了一系列模拟,并将模型应用于从阿尔茨海默病神经影像学倡议 (ADNI) 数据库收集的纵向 fMRI 数据。总体而言,我们在阿尔茨海默病患者和健康对照组之间的全局 FC 网络中没有发现差异,但确实发现了左侧海马体和后扣带回皮层之间 FC 的局部老化模式存在差异。