Suppr超能文献

用于功能连接网络统计推断的方差分量模型。

A variance components model for statistical inference on functional connectivity networks.

机构信息

Division of Biostatistics, University of Minnesota, Minneapolis, MN 55455, USA.

Department of Finance and Statistical Analysis, Alberta School of Business, University of Alberta, Edmonton, AB, Canada T6G 2R6.

出版信息

Neuroimage. 2017 Apr 1;149:256-266. doi: 10.1016/j.neuroimage.2017.01.051. Epub 2017 Jan 24.

Abstract

We propose a variance components linear modeling framework to conduct statistical inference on functional connectivity networks that directly accounts for the temporal autocorrelation inherent in functional magnetic resonance imaging (fMRI) time series data and for the heterogeneity across subjects in the study. The novel method estimates the autocorrelation structure in a nonparametric and subject-specific manner, and estimates the variance due to the heterogeneity using iterative least squares. We apply the new model to a resting-state fMRI study to compare the functional connectivity networks in both typical and reading impaired young adults in order to characterize the resting state networks that are related to reading processes. We also compare the performance of our model to other methods of statistical inference on functional connectivity networks that do not account for the temporal autocorrelation or heterogeneity across the subjects using simulated data, and show that by accounting for these sources of variation and covariation results in more powerful tests for statistical inference.

摘要

我们提出了一种方差分量线性建模框架,用于对功能连接网络进行统计推断,该框架直接考虑了功能磁共振成像 (fMRI) 时间序列数据中固有的时间自相关,以及研究中个体之间的异质性。新方法以非参数和个体特定的方式估计自相关结构,并使用迭代最小二乘法估计由于异质性引起的方差。我们将新模型应用于静息态 fMRI 研究,以比较典型和阅读障碍的年轻成年人的功能连接网络,从而描述与阅读过程相关的静息状态网络。我们还使用模拟数据将我们的模型与其他不考虑时间自相关或个体之间异质性的功能连接网络的统计推断方法进行比较,结果表明,通过考虑这些变异和协变量的来源,统计推断的检验更具效力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验