Suppr超能文献

对髓母细胞瘤的蛋白质组学分析揭示了具有转化潜力的功能生物学。

Proteomic analysis of Medulloblastoma reveals functional biology with translational potential.

机构信息

Center for Cancer and Immunology Research, Children's Research Institute, Children's National Health System, Washington, DC, USA.

Center for Genetic Medicine, Children's Research Institute, Children's National Health System, Washington, DC, USA.

出版信息

Acta Neuropathol Commun. 2018 Jun 7;6(1):48. doi: 10.1186/s40478-018-0548-7.

Abstract

Genomic characterization has begun to redefine diagnostic classifications of cancers. However, it remains a challenge to infer disease phenotypes from genomic alterations alone. To help realize the promise of genomics, we have performed a quantitative proteomics investigation using Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) and 41 tissue samples spanning the 4 genomically based subgroups of medulloblastoma and control cerebellum. We have identified and quantitated thousands of proteins across these groups and find that we are able to recapitulate the genomic subgroups based upon subgroup restricted and differentially abundant proteins while also identifying subgroup specific protein isoforms. Integrating our proteomic measurements with genomic data, we calculate a poor correlation between mRNA and protein abundance. Using EPIC 850 k methylation array data on the same tissues, we also investigate the influence of copy number alterations and DNA methylation on the proteome in an attempt to characterize the impact of these genetic features on the proteome. Reciprocally, we are able to use the proteome to identify which genomic alterations result in altered protein abundance and thus are most likely to impact biology. Finally, we are able to assemble protein-based pathways yielding potential avenues for clinical intervention. From these, we validate the EIF4F cap-dependent translation pathway as a novel druggable pathway in medulloblastoma. Thus, quantitative proteomics complements genomic platforms to yield a more complete understanding of functional tumor biology and identify novel therapeutic targets for medulloblastoma.

摘要

基因组特征分析开始重新定义癌症的诊断分类。然而,仅从基因组改变推断疾病表型仍然具有挑战性。为了帮助实现基因组学的承诺,我们使用稳定同位素标记的氨基酸在细胞培养(SILAC)和跨越基于基因组的四个髓母细胞瘤亚组和对照小脑的 41 个组织样本进行了定量蛋白质组学研究。我们已经鉴定和定量了这些组中的数千种蛋白质,发现我们能够根据亚组受限和差异丰富的蛋白质来重现基因组亚组,同时还鉴定了亚组特异性蛋白同工型。将我们的蛋白质组学测量值与基因组数据整合在一起,我们计算出 mRNA 和蛋白质丰度之间的相关性较差。使用相同组织上的 EPIC 850k 甲基化阵列数据,我们还研究了拷贝数改变和 DNA 甲基化对蛋白质组的影响,试图描述这些遗传特征对蛋白质组的影响。反过来,我们能够使用蛋白质组来识别哪些基因组改变导致蛋白质丰度改变,从而最有可能影响生物学。最后,我们能够组装基于蛋白质的途径,为临床干预提供潜在途径。从中,我们验证了 EIF4F 帽依赖性翻译途径作为髓母细胞瘤中的一种新的可靶向途径。因此,定量蛋白质组学补充了基因组平台,以更全面地了解功能肿瘤生物学,并为髓母细胞瘤确定新的治疗靶点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验