Suppr超能文献

比较两种用于校准受限非补偿多维IRT模型的算法。

Comparing Two Algorithms for Calibrating the Restricted Non-Compensatory Multidimensional IRT Model.

作者信息

Wang Chun, Nydick Steven W

机构信息

University of Minnesota, Minneapolis, USA.

Pearson VUE, Minneapolis, MN.

出版信息

Appl Psychol Meas. 2015 Mar;39(2):119-134. doi: 10.1177/0146621614545983. Epub 2014 Aug 19.

Abstract

The non-compensatory class of multidimensional item response theory (MIRT) models frequently represents the cognitive processes underlying a series of test items better than the compensatory class of MIRT models. Nevertheless, few researchers have used non-compensatory MIRT in modeling psychological data. One reason for this lack of use is because non-compensatory MIRT item parameters are notoriously difficult to accurately estimate. In this article, we propose methods to improve the estimability of a specific non-compensatory model. To initiate the discussion, we address the non-identifiability of the explored non-compensatory MIRT model by suggesting that practitioners use an item-dimension constraint matrix (namely, a Q-matrix) that results in model identifiability. We then compare two promising algorithms for high-dimensional model calibration, Markov chain Monte Carlo (MCMC) and Metropolis-Hastings Robbins-Monro (MH-RM), and discuss, via analytical demonstrations, the challenges in estimating model parameters. Based on simulation studies, we show that when the dimensions are not highly correlated, and when the Q-matrix displays appropriate structure, the non-compensatory MIRT model can be accurately calibrated (using the aforementioned methods) with as few as 1,000 people. Based on the simulations, we conclude that the MCMC algorithm is better able to estimate model parameters across a variety of conditions, whereas the MH-RM algorithm should be used with caution when a test displays complex structure and when the latent dimensions are highly correlated.

摘要

多维项目反应理论(MIRT)模型中的非补偿类模型通常比MIRT模型的补偿类模型更能体现一系列测试项目背后的认知过程。然而,很少有研究者在对心理数据建模时使用非补偿性MIRT模型。这种缺乏使用的一个原因是,非补偿性MIRT项目参数 notoriously难以准确估计。在本文中,我们提出了一些方法来提高特定非补偿模型的可估计性。为了展开讨论,我们通过建议从业者使用导致模型可识别性的项目维度约束矩阵(即Q矩阵)来解决所探讨的非补偿性MIRT模型的不可识别性问题。然后,我们比较了两种用于高维模型校准的有前景的算法,马尔可夫链蒙特卡罗(MCMC)算法和梅特罗波利斯 - 黑斯廷斯罗宾斯 - 门罗(MH - RM)算法,并通过分析论证讨论了估计模型参数时的挑战。基于模拟研究,我们表明,当维度之间的相关性不高,且Q矩阵显示出适当的结构时,使用上述方法,仅需1000人就可以准确校准非补偿性MIRT模型。基于模拟结果,我们得出结论,MCMC算法在各种条件下都能更好地估计模型参数,而当测试显示出复杂结构且潜在维度高度相关时,应谨慎使用MH - RM算法。

相似文献

3
Comparative Analyses of MIRT Models and Software (BMIRT and flexMIRT).MIRT模型与软件(BMIRT和flexMIRT)的比较分析
Educ Psychol Meas. 2017 Apr;77(2):263-274. doi: 10.1177/0013164416661220. Epub 2016 Jul 31.
5
Gaussian variational estimation for multidimensional item response theory.多维项目反应理论的高斯变分估计。
Br J Math Stat Psychol. 2021 Jul;74 Suppl 1:52-85. doi: 10.1111/bmsp.12219. Epub 2020 Oct 16.

引用本文的文献

本文引用的文献

1
A multicomponent latent trait model for diagnosis.一种用于诊断的多成分潜在特质模型。
Psychometrika. 2013 Jan;78(1):14-36. doi: 10.1007/s11336-012-9296-y. Epub 2012 Dec 6.
2
Data-Driven Learning of Q-Matrix.基于数据驱动的Q矩阵学习
Appl Psychol Meas. 2012 Oct;36(7):548-564. doi: 10.1177/0146621612456591.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验