Wang Chun, Nydick Steven W
University of Minnesota, Minneapolis, USA.
Pearson VUE, Minneapolis, MN.
Appl Psychol Meas. 2015 Mar;39(2):119-134. doi: 10.1177/0146621614545983. Epub 2014 Aug 19.
The non-compensatory class of multidimensional item response theory (MIRT) models frequently represents the cognitive processes underlying a series of test items better than the compensatory class of MIRT models. Nevertheless, few researchers have used non-compensatory MIRT in modeling psychological data. One reason for this lack of use is because non-compensatory MIRT item parameters are notoriously difficult to accurately estimate. In this article, we propose methods to improve the estimability of a specific non-compensatory model. To initiate the discussion, we address the non-identifiability of the explored non-compensatory MIRT model by suggesting that practitioners use an item-dimension constraint matrix (namely, a Q-matrix) that results in model identifiability. We then compare two promising algorithms for high-dimensional model calibration, Markov chain Monte Carlo (MCMC) and Metropolis-Hastings Robbins-Monro (MH-RM), and discuss, via analytical demonstrations, the challenges in estimating model parameters. Based on simulation studies, we show that when the dimensions are not highly correlated, and when the Q-matrix displays appropriate structure, the non-compensatory MIRT model can be accurately calibrated (using the aforementioned methods) with as few as 1,000 people. Based on the simulations, we conclude that the MCMC algorithm is better able to estimate model parameters across a variety of conditions, whereas the MH-RM algorithm should be used with caution when a test displays complex structure and when the latent dimensions are highly correlated.
多维项目反应理论(MIRT)模型中的非补偿类模型通常比MIRT模型的补偿类模型更能体现一系列测试项目背后的认知过程。然而,很少有研究者在对心理数据建模时使用非补偿性MIRT模型。这种缺乏使用的一个原因是,非补偿性MIRT项目参数 notoriously难以准确估计。在本文中,我们提出了一些方法来提高特定非补偿模型的可估计性。为了展开讨论,我们通过建议从业者使用导致模型可识别性的项目维度约束矩阵(即Q矩阵)来解决所探讨的非补偿性MIRT模型的不可识别性问题。然后,我们比较了两种用于高维模型校准的有前景的算法,马尔可夫链蒙特卡罗(MCMC)算法和梅特罗波利斯 - 黑斯廷斯罗宾斯 - 门罗(MH - RM)算法,并通过分析论证讨论了估计模型参数时的挑战。基于模拟研究,我们表明,当维度之间的相关性不高,且Q矩阵显示出适当的结构时,使用上述方法,仅需1000人就可以准确校准非补偿性MIRT模型。基于模拟结果,我们得出结论,MCMC算法在各种条件下都能更好地估计模型参数,而当测试显示出复杂结构且潜在维度高度相关时,应谨慎使用MH - RM算法。