Suppr超能文献

一种适用于多种反应风格的通用展开IRT模型。

A General Unfolding IRT Model for Multiple Response Styles.

作者信息

Liu Chen-Wei, Wang Wen-Chung

机构信息

The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong.

The Education University of Hong Kong, Tai Po, New Territories, Hong Kong.

出版信息

Appl Psychol Meas. 2019 May;43(3):195-210. doi: 10.1177/0146621618762743. Epub 2018 Apr 16.

Abstract

It is commonly known that respondents exhibit different response styles when responding to Likert-type items. For example, some respondents tend to select the extreme categories (e.g., strongly disagree and strongly agree), whereas some tend to select the middle categories (e.g., disagree, neutral, and agree). Furthermore, some respondents tend to disagree with every item (e.g., strongly disagree and disagree), whereas others tend to agree with every item (e.g., agree and strongly agree). In such cases, fitting standard unfolding item response theory (IRT) models that assume no response style will yield a poor fit and biased parameter estimates. Although there have been attempts to develop dominance IRT models to accommodate the various response styles, such models are usually restricted to a specific response style and cannot be used for unfolding data. In this study, a general unfolding IRT model is proposed that can be combined with a softmax function to accommodate various response styles via scoring functions. The parameters of the new model can be estimated using Bayesian Markov chain Monte Carlo algorithms. An empirical data set is used for demonstration purposes, followed by simulation studies to assess the parameter recovery of the new model, as well as the consequences of ignoring the impact of response styles on parameter estimators by fitting standard unfolding IRT models. The results suggest the new model to exhibit good parameter recovery and seriously biased estimates when the response styles are ignored.

摘要

众所周知,在回答李克特式项目时,受访者会表现出不同的回答方式。例如,一些受访者倾向于选择极端类别(如强烈不同意和强烈同意),而一些受访者则倾向于选择中间类别(如不同意、中立和同意)。此外,一些受访者倾向于对每个项目都持否定态度(如强烈不同意和不同意),而另一些受访者则倾向于对每个项目都持肯定态度(如同意和强烈同意)。在这种情况下,拟合假设不存在回答方式的标准展开项目反应理论(IRT)模型将导致拟合效果不佳和参数估计有偏差。尽管已经有人尝试开发优势IRT模型来适应各种回答方式,但这类模型通常局限于特定的回答方式,不能用于展开数据。在本研究中,提出了一种通用的展开IRT模型,该模型可以与softmax函数相结合,通过评分函数来适应各种回答方式。新模型的参数可以使用贝叶斯马尔可夫链蒙特卡罗算法进行估计。使用一个实证数据集进行演示,随后进行模拟研究,以评估新模型的参数恢复情况,以及通过拟合标准展开IRT模型而忽略回答方式对参数估计量的影响所产生的后果。结果表明,当忽略回答方式时,新模型表现出良好的参数恢复能力,但估计值存在严重偏差。

相似文献

1
A General Unfolding IRT Model for Multiple Response Styles.
Appl Psychol Meas. 2019 May;43(3):195-210. doi: 10.1177/0146621618762743. Epub 2018 Apr 16.
2
Unfolding IRT Models for Likert-Type Items With a Don't Know Option.
Appl Psychol Meas. 2016 Oct;40(7):517-533. doi: 10.1177/0146621616664047. Epub 2016 Aug 20.
3
Killing Two Birds with One Stone: Accounting for Unfolding Item Response Process and Response Styles Using Unfolding Item Response Tree Models.
Multivariate Behav Res. 2025 Mar-Apr;60(2):161-183. doi: 10.1080/00273171.2024.2394607. Epub 2024 Aug 31.
4
Sample Size Requirements for Applying Mixed Polytomous Item Response Models: Results of a Monte Carlo Simulation Study.
Front Psychol. 2019 Nov 13;10:2494. doi: 10.3389/fpsyg.2019.02494. eCollection 2019.
5
Mixture Random-Effect IRT Models for Controlling Extreme Response Style on Rating Scales.
Front Psychol. 2016 Nov 2;7:1706. doi: 10.3389/fpsyg.2016.01706. eCollection 2016.
6
Confirmatory Multidimensional IRT Unfolding Models for Graded-Response Items.
Appl Psychol Meas. 2016 Jan;40(1):56-72. doi: 10.1177/0146621615602855. Epub 2015 Sep 1.
7
Using IRTree Models to Promote Selection Validity in the Presence of Extreme Response Styles.
J Intell. 2023 Nov 17;11(11):216. doi: 10.3390/jintelligence11110216.
9
Validity of Three IRT Models for Measuring and Controlling Extreme and Midpoint Response Styles.
Front Psychol. 2020 Feb 21;11:271. doi: 10.3389/fpsyg.2020.00271. eCollection 2020.
10
Do Response Styles Affect Estimates of Growth on Social-Emotional Constructs? Evidence from Four Years of Longitudinal Survey Scores.
Multivariate Behav Res. 2021 Nov-Dec;56(6):853-873. doi: 10.1080/00273171.2020.1778440. Epub 2020 Jul 7.

引用本文的文献

1
The Dominant Trait Profile Method of Scoring Multidimensional Forced-Choice Questionnaires.
Educ Psychol Meas. 2025 Aug 14:00131644251360386. doi: 10.1177/00131644251360386.
2
Exploring the Influence of Response Styles on Continuous Scale Assessments: Insights From a Novel Modeling Approach.
Educ Psychol Meas. 2025 Feb;85(1):178-214. doi: 10.1177/00131644241242789. Epub 2024 Apr 17.
3
Investigating Directional Invariance in an Item Response Tree Model for Extreme Response Style and Trait-Based Unfolding Responses.
Appl Psychol Meas. 2024 Jul;48(4-5):187-207. doi: 10.1177/01466216241261705. Epub 2024 Jun 11.
4
Co-occurring dominance and ideal point processes: A general IRTree framework for multidimensional item responding.
Behav Res Methods. 2024 Oct;56(7):7005-7025. doi: 10.3758/s13428-024-02405-4. Epub 2024 Apr 16.
5
Multidimensional item response theory models for testlet-based doubly bounded data.
Behav Res Methods. 2024 Sep;56(6):5309-5353. doi: 10.3758/s13428-023-02272-5. Epub 2023 Nov 20.
6
The Effects of Aberrant Responding on Model-Fit Assuming Different Underlying Response Processes.
Appl Psychol Meas. 2023 Sep;47(5-6):420-437. doi: 10.1177/01466216231201987. Epub 2023 Sep 19.
7
Measuring Response Style Stability Across Constructs With Item Response Trees.
Educ Psychol Meas. 2022 Apr;82(2):281-306. doi: 10.1177/00131644211020103. Epub 2021 Jun 2.
9
10
Fitting item response unfolding models to Likert-scale data using mirt in R.
PLoS One. 2018 May 3;13(5):e0196292. doi: 10.1371/journal.pone.0196292. eCollection 2018.

本文引用的文献

1
Exploring Rubric-Related Multidimensionality in Polytomously Scored Test Items.
Appl Psychol Meas. 2017 May;41(3):163-177. doi: 10.1177/0146621616677715. Epub 2016 Nov 24.
2
Unfolding IRT Models for Likert-Type Items With a Don't Know Option.
Appl Psychol Meas. 2016 Oct;40(7):517-533. doi: 10.1177/0146621616664047. Epub 2016 Aug 20.
3
Confirmatory Multidimensional IRT Unfolding Models for Graded-Response Items.
Appl Psychol Meas. 2016 Jan;40(1):56-72. doi: 10.1177/0146621615602855. Epub 2015 Sep 1.
4
Measuring response styles in Likert items.
Psychol Methods. 2017 Mar;22(1):69-83. doi: 10.1037/met0000106. Epub 2016 Nov 28.
5
Item response theory scoring and the detection of curvilinear relationships.
Psychol Methods. 2017 Mar;22(1):191-203. doi: 10.1037/met0000101. Epub 2016 Nov 7.
6
A flexible full-information approach to the modeling of response styles.
Psychol Methods. 2016 Sep;21(3):328-47. doi: 10.1037/met0000059. Epub 2015 Dec 7.
7
A generalized item response tree model for psychological assessments.
Behav Res Methods. 2016 Sep;48(3):1070-85. doi: 10.3758/s13428-015-0631-y.
8
Constrained Dual Scaling for Detecting Response Styles in Categorical Data.
Psychometrika. 2015 Dec;80(4):968-94. doi: 10.1007/s11336-015-9458-9. Epub 2015 Apr 8.
9
Improving measurement precision of test batteries using multidimensional item response models.
Psychol Methods. 2004 Mar;9(1):116-36. doi: 10.1037/1082-989X.9.1.116.
10
A Class of Probabilistic Unfolding Models for Polytomous Responses.
J Math Psychol. 2001 Apr;45(2):224-248. doi: 10.1006/jmps.2000.1310.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验