Hosseinzadeh Mostafa, Cole Ki Lynn Matlock
Mercer University, Atlanta, GA, USA.
Oklahoma State University, Stillwater, USA.
Educ Psychol Meas. 2024 Oct;84(5):1012-1040. doi: 10.1177/00131644231210509. Epub 2023 Dec 21.
In real-world situations, multidimensional data may appear on large-scale tests or psychological surveys. The purpose of this study was to investigate the effects of the quantity and magnitude of cross-loadings and model specification on item parameter recovery in multidimensional Item Response Theory (MIRT) models, especially when the model was misspecified as a simple structure, ignoring the quantity and magnitude of cross-loading. A simulation study that replicated this scenario was designed to manipulate the variables that could potentially influence the precision of item parameter estimation in the MIRT models. Item parameters were estimated using marginal maximum likelihood, utilizing the expectation-maximization algorithms. A compensatory two-parameter logistic-MIRT model with two dimensions and dichotomous item-responses was used to simulate and calibrate the data for each combination of conditions across 500 replications. The results of this study indicated that ignoring the quantity and magnitude of cross-loading and model specification resulted in inaccurate and biased item discrimination parameter estimates. As the quantity and magnitude of cross-loading increased, the root mean square of error and bias estimates of item discrimination worsened.
在现实世界的情况下,多维数据可能出现在大规模测试或心理调查中。本研究的目的是调查交叉负荷的数量和大小以及模型设定对多维项目反应理论(MIRT)模型中项目参数恢复的影响,特别是当模型被错误设定为简单结构,而忽略交叉负荷的数量和大小时。设计了一项模拟研究来复制这种情况,以操纵可能影响MIRT模型中项目参数估计精度的变量。使用期望最大化算法,通过边际最大似然法估计项目参数。使用具有两个维度和二分项目反应的补偿性双参数逻辑MIRT模型,对500次重复实验中每种条件组合的数据进行模拟和校准。本研究结果表明,忽略交叉负荷的数量和大小以及模型设定会导致项目区分参数估计不准确且有偏差。随着交叉负荷的数量和大小增加,项目区分的误差和偏差估计的均方根会变差。