Suppr超能文献

研究在将单维模型拟合到多维数据时[具体指标]和近似误差均方根(RMSEA)的行为。 (注:原文中“the Behaviors of and”这里“of”后面应该有具体指标未给出完整)

Investigating the Behaviors of and RMSEA in Fitting a Unidimensional Model to Multidimensional Data.

作者信息

Xu Jie, Paek Insu, Xia Yan

机构信息

Florida State University, Tallahassee, FL, USA.

Arizona State University, Tempe, AZ, USA.

出版信息

Appl Psychol Meas. 2017 Nov;41(8):632-644. doi: 10.1177/0146621617710464. Epub 2017 May 30.

Abstract

It has been widely known that the Type I error rates of goodness-of-fit tests using full information test statistics, such as Pearson's test statistic χ and the likelihood ratio test statistic , are problematic when data are sparse. Under such conditions, the limited information goodness-of-fit test statistic is recommended in model fit assessment for models with binary response data. A simulation study was conducted to investigate the power and Type I error rate of in fitting unidimensional models to many different types of multidimensional data. As an additional interest, the behavior of RMSEA was also examined, which is the root mean square error approximation (RMSEA) based on . Findings from the current study showed that and RMSEA are sensitive in detecting the misfits due to varying slope parameters, the bifactor structure, and the partially (or completely) simple structure for multidimensional data, but not the misfits due to the within-item multidimensional structures.

摘要

众所周知,当数据稀疏时,使用完全信息检验统计量(如Pearson检验统计量χ和似然比检验统计量)进行拟合优度检验的I型错误率存在问题。在这种情况下,对于具有二元响应数据的模型,建议在模型拟合评估中使用有限信息拟合优度检验统计量。进行了一项模拟研究,以调查在将单维模型拟合到许多不同类型的多维数据时的检验功效和I型错误率。作为额外的关注点,还研究了基于的均方根误差近似值(RMSEA)的行为。当前研究的结果表明,对于多维数据,和RMSEA在检测由于斜率参数变化、双因素结构以及部分(或完全)简单结构导致的拟合不足方面很敏感,但对由于项目内多维结构导致的拟合不足不敏感。

相似文献

1
Investigating the Behaviors of and RMSEA in Fitting a Unidimensional Model to Multidimensional Data.
Appl Psychol Meas. 2017 Nov;41(8):632-644. doi: 10.1177/0146621617710464. Epub 2017 May 30.
2
Assessing Approximate Fit in Categorical Data Analysis.
Multivariate Behav Res. 2014 Jul-Aug;49(4):305-28. doi: 10.1080/00273171.2014.911075.
3
Limited-information goodness-of-fit testing of diagnostic classification item response models.
Br J Math Stat Psychol. 2016 Nov;69(3):225-252. doi: 10.1111/bmsp.12074.
4
Is the Area Under Curve Appropriate for Evaluating the Fit of Psychometric Models?
Educ Psychol Meas. 2023 Jun;83(3):586-608. doi: 10.1177/00131644221098182. Epub 2022 May 24.
5
Limited-information goodness-of-fit testing of hierarchical item factor models.
Br J Math Stat Psychol. 2013 May;66(2):245-76. doi: 10.1111/j.2044-8317.2012.02050.x. Epub 2012 May 29.
6
Identifying the Source of Misfit in Item Response Theory Models.
Multivariate Behav Res. 2014 Jul-Aug;49(4):354-71. doi: 10.1080/00273171.2014.910744.
7
An Extended GFfit Statistic Defined on Orthogonal Components of Pearson's Chi-Square.
Psychometrika. 2023 Mar;88(1):208-240. doi: 10.1007/s11336-022-09866-6. Epub 2022 Jun 3.
8
Pearson's goodness-of-fit tests for sparse distributions.
J Appl Stat. 2021 Dec 30;50(5):1078-1093. doi: 10.1080/02664763.2021.2017413. eCollection 2023.
9
A Comparison of Limited-Information Test Statistics for a Response Style MIRT Model.
Multivariate Behav Res. 2021 Jul-Aug;56(4):687-702. doi: 10.1080/00273171.2020.1828024. Epub 2020 Oct 26.
10
Type I errors and power of the parametric bootstrap goodness-of-fit test: full and limited information.
Br J Math Stat Psychol. 2003 Nov;56(Pt 2):271-88. doi: 10.1348/000711003770480048.

本文引用的文献

1
Goodness-of-Fit Testing for Latent Class Models.
Multivariate Behav Res. 1993 Jul 1;28(3):375-89. doi: 10.1207/s15327906mbr2803_4.
2
Assessing Approximate Fit in Categorical Data Analysis.
Multivariate Behav Res. 2014 Jul-Aug;49(4):305-28. doi: 10.1080/00273171.2014.911075.
3
Limited-information goodness-of-fit testing of hierarchical item factor models.
Br J Math Stat Psychol. 2013 May;66(2):245-76. doi: 10.1111/j.2044-8317.2012.02050.x. Epub 2012 May 29.
4
Limited-information goodness-of-fit testing of item response theory models for sparse 2 tables.
Br J Math Stat Psychol. 2006 May;59(Pt 1):173-94. doi: 10.1348/000711005X66419.
5
Type I errors and power of the parametric bootstrap goodness-of-fit test: full and limited information.
Br J Math Stat Psychol. 2003 Nov;56(Pt 2):271-88. doi: 10.1348/000711003770480048.
6
A goodness of fit test for sparse 2p contingency tables.
Br J Math Stat Psychol. 2002 May;55(Pt 1):1-15. doi: 10.1348/000711002159617.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验