Suppr超能文献

评估分类数据分析中的近似拟合度。

Assessing Approximate Fit in Categorical Data Analysis.

作者信息

Maydeu-Olivares Alberto, Joe Harry

机构信息

a Faculty of Psychology , University of Barcelona.

b Department of Statistics , University of British Columbia.

出版信息

Multivariate Behav Res. 2014 Jul-Aug;49(4):305-28. doi: 10.1080/00273171.2014.911075.

Abstract

A family of Root Mean Square Error of Approximation (RMSEA) statistics is proposed for assessing the goodness of approximation in discrete multivariate analysis with applications to item response theory (IRT) models. The family includes RMSEAs to assess the approximation up to any level of association of the discrete variables. Two members of this family are RMSEA2, which uses up to bivariate moments, and the full information RMSEAn. The RMSEA2 is estimated using the M2 statistic of Maydeu-Olivares and Joe (2005, 2006), whereas for maximum likelihood estimation, RMSEAn is estimated using Pearson's X(2) statistic. Using IRT models, we provide cutoff criteria of adequate, good, and excellent fit using the RMSEA2. When the data are ordinal, we find a strong linear relationship between the RMSEA2 and the Standardized Root Mean Squared Residual goodness-of-fit index. We are unable to offer cutoff criteria for the RMSEAn as its population values decrease as the number of variables and categories increase.

摘要

本文提出了一族近似均方根误差(RMSEA)统计量,用于评估离散多变量分析中的近似优度,并应用于项目反应理论(IRT)模型。该族统计量包括用于评估离散变量任意关联水平下近似程度的RMSEA。这一族统计量中的两个成员是RMSEA2(它使用至多双变量矩)和全信息RMSEAn。RMSEA2使用Maydeu-Olivares和Joe(2005年、2006年)的M2统计量进行估计,而对于最大似然估计,RMSEAn使用Pearson卡方统计量进行估计。利用IRT模型,我们给出了基于RMSEA2的充分拟合、良好拟合和优秀拟合的临界标准。当数据为有序数据时,我们发现RMSEA2与标准化均方根残差拟合优度指数之间存在强线性关系。由于RMSEAn的总体值随着变量数量和类别数量的增加而减小,我们无法给出其临界标准。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验