Maydeu-Olivares Alberto, Joe Harry
a Faculty of Psychology , University of Barcelona.
b Department of Statistics , University of British Columbia.
Multivariate Behav Res. 2014 Jul-Aug;49(4):305-28. doi: 10.1080/00273171.2014.911075.
A family of Root Mean Square Error of Approximation (RMSEA) statistics is proposed for assessing the goodness of approximation in discrete multivariate analysis with applications to item response theory (IRT) models. The family includes RMSEAs to assess the approximation up to any level of association of the discrete variables. Two members of this family are RMSEA2, which uses up to bivariate moments, and the full information RMSEAn. The RMSEA2 is estimated using the M2 statistic of Maydeu-Olivares and Joe (2005, 2006), whereas for maximum likelihood estimation, RMSEAn is estimated using Pearson's X(2) statistic. Using IRT models, we provide cutoff criteria of adequate, good, and excellent fit using the RMSEA2. When the data are ordinal, we find a strong linear relationship between the RMSEA2 and the Standardized Root Mean Squared Residual goodness-of-fit index. We are unable to offer cutoff criteria for the RMSEAn as its population values decrease as the number of variables and categories increase.
本文提出了一族近似均方根误差(RMSEA)统计量,用于评估离散多变量分析中的近似优度,并应用于项目反应理论(IRT)模型。该族统计量包括用于评估离散变量任意关联水平下近似程度的RMSEA。这一族统计量中的两个成员是RMSEA2(它使用至多双变量矩)和全信息RMSEAn。RMSEA2使用Maydeu-Olivares和Joe(2005年、2006年)的M2统计量进行估计,而对于最大似然估计,RMSEAn使用Pearson卡方统计量进行估计。利用IRT模型,我们给出了基于RMSEA2的充分拟合、良好拟合和优秀拟合的临界标准。当数据为有序数据时,我们发现RMSEA2与标准化均方根残差拟合优度指数之间存在强线性关系。由于RMSEAn的总体值随着变量数量和类别数量的增加而减小,我们无法给出其临界标准。