Department of Computer Science, National Textile University, Faisalabad, Pakistan.
Department of Software Engineering, Mirpur University of Science & Technology, Mirpur, Azad-Kashmir, Pakistan.
PLoS One. 2018 Jun 8;13(6):e0198175. doi: 10.1371/journal.pone.0198175. eCollection 2018.
The Bag-of-Visual-Words (BoVW) model is widely used for image classification, object recognition and image retrieval problems. In BoVW model, the local features are quantized and 2-D image space is represented in the form of order-less histogram of visual words. The image classification performance suffers due to the order-less representation of image. This paper presents a novel image representation that incorporates the spatial information to the inverted index of BoVW model. The spatial information is added by calculating the global relative spatial orientation of visual words in a rotation invariant manner. For this, we computed the geometric relationship between triplets of identical visual words by calculating an orthogonal vector relative to each point in the triplets of identical visual words. The histogram of visual words is calculated on the basis of the magnitude of these orthogonal vectors. This calculation provides the unique information regarding the relative position of visual words when they are collinear. The proposed image representation is evaluated by using four standard image benchmarks. The experimental results and quantitative comparisons demonstrate that the proposed image representation outperforms the existing state-of-the-art in terms of classification accuracy.
BoVW 模型广泛应用于图像分类、目标识别和图像检索问题。在 BoVW 模型中,局部特征被量化,二维图像空间以无序的视觉词直方图的形式表示。由于图像的无序表示,图像分类性能受到影响。本文提出了一种新的图像表示方法,将空间信息纳入 BoVW 模型的倒排索引中。通过以旋转不变的方式计算视觉词的全局相对空间方向,添加了空间信息。为此,我们通过计算三个相同视觉词之间的每个点的正交向量来计算相同视觉词之间的三元组的几何关系。基于这些正交向量的大小计算视觉词的直方图。当视觉词共线时,此计算提供了有关视觉词相对位置的唯一信息。通过使用四个标准图像基准对所提出的图像表示进行评估。实验结果和定量比较表明,所提出的图像表示在分类准确性方面优于现有最先进的方法。