Suppr超能文献

比较模型在艺术分类方面的性能。

Compare the performance of the models in art classification.

机构信息

College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, China.

School of Intelligent Transportation, Zhejiang Institute of Mechanical & Electrical Engineering, Hangzhou, China.

出版信息

PLoS One. 2021 Mar 12;16(3):e0248414. doi: 10.1371/journal.pone.0248414. eCollection 2021.

Abstract

Because large numbers of artworks are preserved in museums and galleries, much work must be done to classify these works into genres, styles and artists. Recent technological advancements have enabled an increasing number of artworks to be digitized. Thus, it is necessary to teach computers to analyze (e.g., classify and annotate) art to assist people in performing such tasks. In this study, we tested 7 different models on 3 different datasets under the same experimental setup to compare their art classification performances when either using or not using transfer learning. The models were compared based on their abilities for classifying genres, styles and artists. Comparing the result with previous work shows that the model performance can be effectively improved by optimizing the model structure, and our results achieve state-of-the-art performance in all classification tasks with three datasets. In addition, we visualized the process of style and genre classification to help us understand the difficulties that computers have when tasked with classifying art. Finally, we used the trained models described above to perform similarity searches and obtained performance improvements.

摘要

由于大量艺术品被保存在博物馆和画廊中,因此必须对这些作品进行分类,分为流派、风格和艺术家。最近的技术进步使得越来越多的艺术品能够被数字化。因此,有必要教会计算机分析(例如分类和注释)艺术,以帮助人们执行此类任务。在这项研究中,我们在相同的实验设置下,在 3 个不同的数据集上测试了 7 种不同的模型,以比较在使用或不使用迁移学习时它们在艺术分类性能上的表现。根据模型对流派、风格和艺术家进行分类的能力对模型进行了比较。与之前的工作进行比较表明,通过优化模型结构可以有效地提高模型性能,并且我们的结果在所有分类任务中都达到了三个数据集的最新性能。此外,我们可视化了风格和流派分类的过程,以帮助我们理解计算机在进行艺术分类时遇到的困难。最后,我们使用上述训练好的模型进行相似性搜索,并获得了性能提升。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c27/7954342/617d1ac574eb/pone.0248414.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验