Suppr超能文献

基于局部编码的图像分类匹配核方法

Local coding based matching kernel method for image classification.

作者信息

Song Yan, McLoughlin Ian Vince, Dai Li-Rong

机构信息

National Engineering Laboratory of Speech and Language Information Processing, University of Science and Technology of China, Hefei, China.

出版信息

PLoS One. 2014 Aug 13;9(8):e103575. doi: 10.1371/journal.pone.0103575. eCollection 2014.

Abstract

This paper mainly focuses on how to effectively and efficiently measure visual similarity for local feature based representation. Among existing methods, metrics based on Bag of Visual Word (BoV) techniques are efficient and conceptually simple, at the expense of effectiveness. By contrast, kernel based metrics are more effective, but at the cost of greater computational complexity and increased storage requirements. We show that a unified visual matching framework can be developed to encompass both BoV and kernel based metrics, in which local kernel plays an important role between feature pairs or between features and their reconstruction. Generally, local kernels are defined using Euclidean distance or its derivatives, based either explicitly or implicitly on an assumption of Gaussian noise. However, local features such as SIFT and HoG often follow a heavy-tailed distribution which tends to undermine the motivation behind Euclidean metrics. Motivated by recent advances in feature coding techniques, a novel efficient local coding based matching kernel (LCMK) method is proposed. This exploits the manifold structures in Hilbert space derived from local kernels. The proposed method combines advantages of both BoV and kernel based metrics, and achieves a linear computational complexity. This enables efficient and scalable visual matching to be performed on large scale image sets. To evaluate the effectiveness of the proposed LCMK method, we conduct extensive experiments with widely used benchmark datasets, including 15-Scenes, Caltech101/256, PASCAL VOC 2007 and 2011 datasets. Experimental results confirm the effectiveness of the relatively efficient LCMK method.

摘要

本文主要关注如何针对基于局部特征的表示有效地测量视觉相似性。在现有方法中,基于视觉词袋(BoV)技术的度量是高效的且概念上简单,但牺牲了有效性。相比之下,基于核的度量更有效,但代价是计算复杂度更高且存储需求增加。我们表明,可以开发一个统一的视觉匹配框架来涵盖基于BoV和基于核的度量,其中局部核在特征对之间或特征与其重构之间起着重要作用。一般来说,局部核是使用欧几里得距离或其导数来定义的,这要么明确地要么隐含地基于高斯噪声的假设。然而,诸如尺度不变特征变换(SIFT)和方向梯度直方图(HoG)等局部特征通常遵循重尾分布,这往往会削弱欧几里得度量背后的动机。受特征编码技术近期进展的启发,提出了一种新颖的基于高效局部编码的匹配核(LCMK)方法。该方法利用从局部核导出的希尔伯特空间中的流形结构。所提出的方法结合了基于BoV和基于核的度量的优点,并实现了线性计算复杂度。这使得能够在大规模图像集上高效且可扩展地执行视觉匹配。为了评估所提出的LCMK方法的有效性,我们使用广泛使用的基准数据集进行了大量实验,包括15场景、加州理工学院101/256、PASCAL VOC 2007和2011数据集。实验结果证实了相对高效的LCMK方法的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5a7/4132086/f23083b8a89b/pone.0103575.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验