Suppr超能文献

早期神经反应为和谐音优于不和谐音提供了基础。

Early neural responses underlie advantages for consonance over dissonance.

机构信息

Universitat Pompeu Fabra, C. Ramon Trias Fargas, 25-27, 08005 Barcelona, Spain.

Universitat Pompeu Fabra, C. Ramon Trias Fargas, 25-27, 08005 Barcelona, Spain.

出版信息

Neuropsychologia. 2018 Aug;117:188-198. doi: 10.1016/j.neuropsychologia.2018.06.005. Epub 2018 Jun 7.

Abstract

Consonant musical intervals tend to be more readily processed than dissonant intervals. In the present study, we explore the neural basis for this difference by registering how the brain responds after changes in consonance and dissonance, and how formal musical training modulates these responses. Event-related brain potentials (ERPs) were registered while participants were presented with sequences of consonant intervals interrupted by a dissonant interval, or sequences of dissonant intervals interrupted by a consonant interval. Participants were musicians and non-musicians. Our results show that brain responses triggered by changes in a consonant context differ from those triggered in a dissonant context. Changes in a sequence of consonant intervals are rapidly processed independently of musical expertise, as revealed by a change-related mismatch negativity (MMN, a component of the ERPs triggered by an odd stimulus in a sequence of stimuli) elicited in both musicians and non-musicians. In contrast, changes in a sequence of dissonant intervals elicited a late MMN only in participants with prolonged musical training. These different neural responses might form the basis for the processing advantages observed for consonance over dissonance and provide information about how formal musical training modulates them.

摘要

协和音程比不协和音程更容易被处理。在本研究中,我们通过记录大脑在协和和不协和音程变化后的反应,以及正式的音乐训练如何调节这些反应,来探索这种差异的神经基础。当参与者被呈现协和音程序列被不协和音程打断,或不协和音程序列被协和音程打断时,记录事件相关脑电位(ERPs)。参与者为音乐家和非音乐家。我们的结果表明,由协和音程变化引发的大脑反应与由不协和音程变化引发的大脑反应不同。由序列中的不协和音程引起的变化,无论音乐专业知识如何,都能被快速处理,这反映在音乐家和非音乐家的诱发的与变化相关的失匹配负波(MMN,由刺激序列中的奇数刺激引发的 ERPs 的一个成分)中。相比之下,只有在有长期音乐训练的参与者中,序列中的不协和音程变化才会引发晚期 MMN。这些不同的神经反应可能是协和音程比不协和音程处理优势的基础,并提供了有关正式音乐训练如何调节它们的信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3717/6092559/d37de5a0ccde/gr1.jpg

相似文献

1
Early neural responses underlie advantages for consonance over dissonance.
Neuropsychologia. 2018 Aug;117:188-198. doi: 10.1016/j.neuropsychologia.2018.06.005. Epub 2018 Jun 7.
2
Neural activity related to discrimination and vocal production of consonant and dissonant musical intervals.
Brain Res. 2016 Jul 15;1643:59-69. doi: 10.1016/j.brainres.2016.04.065. Epub 2016 Apr 28.
3
The sound of music: differentiating musicians using a fast, musical multi-feature mismatch negativity paradigm.
Neuropsychologia. 2012 Jun;50(7):1432-43. doi: 10.1016/j.neuropsychologia.2012.02.028. Epub 2012 Mar 6.
5
Brain processing of consonance/dissonance in musicians and controls: a hemispheric asymmetry revisited.
Eur J Neurosci. 2016 Sep;44(6):2340-56. doi: 10.1111/ejn.13330. Epub 2016 Aug 2.
6
Dissonant endings of chord progressions elicit a larger ERAN than ambiguous endings in musicians.
Psychophysiology. 2020 Feb;57(2):e13476. doi: 10.1111/psyp.13476. Epub 2019 Sep 12.
7
Phase locked neural activity in the human brainstem predicts preference for musical consonance.
Neuropsychologia. 2014 May;58(100):23-32. doi: 10.1016/j.neuropsychologia.2014.03.011. Epub 2014 Mar 29.
8
Neural correlates of consonance, dissonance, and the hierarchy of musical pitch in the human brainstem.
J Neurosci. 2009 Oct 21;29(42):13165-71. doi: 10.1523/JNEUROSCI.3900-09.2009.
9
Neural correlates of acoustic dissonance in music: The role of musicianship, schematic and veridical expectations.
PLoS One. 2021 Dec 1;16(12):e0260728. doi: 10.1371/journal.pone.0260728. eCollection 2021.
10
Consonance and dissonance of musical chords: neural correlates in auditory cortex of monkeys and humans.
J Neurophysiol. 2001 Dec;86(6):2761-88. doi: 10.1152/jn.2001.86.6.2761.

引用本文的文献

1
Pleasantness makes a good time: musical consonance shapes interpersonal synchronization in dyadic joint action.
Front Hum Neurosci. 2024 Oct 22;18:1472632. doi: 10.3389/fnhum.2024.1472632. eCollection 2024.
2
Breaking (musical) boundaries by investigating brain dynamics of event segmentation during real-life music-listening.
Proc Natl Acad Sci U S A. 2024 Sep 3;121(36):e2319459121. doi: 10.1073/pnas.2319459121. Epub 2024 Aug 26.
3
Neuromagnetic representation of musical roundness in chord progressions.
Front Neurosci. 2024 Apr 8;18:1383554. doi: 10.3389/fnins.2024.1383554. eCollection 2024.
5
Crossmodal Harmony: Looking for the Meaning of Harmony Beyond Hearing.
Iperception. 2022 Feb 10;13(1):20416695211073817. doi: 10.1177/20416695211073817. eCollection 2022 Jan-Feb.
6
Neural correlates of acoustic dissonance in music: The role of musicianship, schematic and veridical expectations.
PLoS One. 2021 Dec 1;16(12):e0260728. doi: 10.1371/journal.pone.0260728. eCollection 2021.
7
Memorisation and implicit perceptual learning are enhanced for preferred musical intervals and chords.
Psychon Bull Rev. 2021 Oct;28(5):1623-1637. doi: 10.3758/s13423-021-01922-z. Epub 2021 May 4.

本文引用的文献

1
Brain processing of consonance/dissonance in musicians and controls: a hemispheric asymmetry revisited.
Eur J Neurosci. 2016 Sep;44(6):2340-56. doi: 10.1111/ejn.13330. Epub 2016 Aug 2.
2
Differential Processing of Consonance and Dissonance within the Human Superior Temporal Gyrus.
Front Hum Neurosci. 2016 Apr 13;10:154. doi: 10.3389/fnhum.2016.00154. eCollection 2016.
3
Processing advantages for consonance: A comparison between rats (Rattus norvegicus) and humans (Homo sapiens).
J Comp Psychol. 2016 May;130(2):97-108. doi: 10.1037/com0000027. Epub 2016 Apr 14.
4
(Dis-)Harmony in movement: effects of musical dissonance on movement timing and form.
Exp Brain Res. 2015 May;233(5):1585-95. doi: 10.1007/s00221-015-4233-9. Epub 2015 Mar 1.
5
Functional organization for musical consonance and tonal pitch hierarchy in human auditory cortex.
Neuroimage. 2014 Nov 1;101:204-14. doi: 10.1016/j.neuroimage.2014.07.005. Epub 2014 Jul 12.
6
An Intracranial EEG Study of the Neural Dynamics of Musical Valence Processing.
Cereb Cortex. 2015 Nov;25(11):4038-47. doi: 10.1093/cercor/bhu118. Epub 2014 Jun 5.
7
Musicians and non-musicians' different reliance of features in consonance perception: a behavioral and ERP study.
Clin Neurophysiol. 2014 May;125(5):971-8. doi: 10.1016/j.clinph.2013.10.016. Epub 2013 Oct 30.
8
Newborn infants' auditory system is sensitive to Western music chord categories.
Front Psychol. 2013 Aug 7;4:492. doi: 10.3389/fpsyg.2013.00492. eCollection 2013.
9
The role of the auditory brainstem in processing musically relevant pitch.
Front Psychol. 2013 May 13;4:264. doi: 10.3389/fpsyg.2013.00264. eCollection 2013.
10
Consonance and pitch.
J Exp Psychol Gen. 2013 Nov;142(4):1142-58. doi: 10.1037/a0030830. Epub 2013 Jan 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验