Suppr超能文献

利用纵向锰增强 MRI(MEMRI)可视化活性多突触回路。

Visualization of Active Polysynaptic Circuits With Longitudinal Manganese-Enhanced MRI (MEMRI).

机构信息

Department of Stress Neurobiology & Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany.

Core Unit Neuroimaging, Max Planck Institute of Psychiatry, Munich, Germany.

出版信息

Front Neural Circuits. 2018 May 22;12:42. doi: 10.3389/fncir.2018.00042. eCollection 2018.

Abstract

Manganese-enhanced magnetic resonance imaging (MEMRI) is a powerful tool for non-invasive whole-brain mapping of neuronal activity. Mn enters active neurons via voltage-gated calcium channels and increases local contrast in T-weighted images. Given the property of Mn of axonal transport, this technique can also be used for tract tracing after local administration of the contrast agent. However, MEMRI is still not widely employed in basic research due to the lack of a complete description of the Mn dynamics in the brain. Here, we sought to investigate how the activity state of neurons modulates interneuronal Mn transport. To this end, we injected mice with low dose MnCl 2. (i.p., 20 mg/kg; repeatedly for 8 days) followed by two MEMRI scans at an interval of 1 week without further MnCl injections. We assessed changes in T contrast intensity before (scan 1) and after (scan 2) partial sensory deprivation (unilateral whisker trimming), while keeping the animals in a sensory enriched environment. After correcting for the general decay in Mn content, whole brain analysis revealed a single cluster with higher signal in scan 1 compared to scan 2: the left barrel cortex corresponding to the right untrimmed whiskers. In the inverse contrast (scan 2 > scan 1), a number of brain structures, including many efferents of the left barrel cortex were observed. These results suggest that continuous neuronal activity elicited by ongoing sensory stimulation accelerates Mn transport from the uptake site to its projection terminals, while the blockage of sensory-input and the resulting decrease in neuronal activity attenuates Mn transport. The description of this critical property of Mn dynamics in the brain allows a better understanding of MEMRI functional mechanisms, which will lead to more carefully designed experiments and clearer interpretation of the results.

摘要

锰增强磁共振成像(MEMRI)是一种用于非侵入性全脑神经元活动映射的强大工具。Mn 通过电压门控钙通道进入活性神经元,并增加 T 加权图像的局部对比度。鉴于 Mn 的轴突运输特性,这种技术也可以在局部给予造影剂后用于轨迹追踪。然而,由于缺乏对大脑中 Mn 动力学的完整描述,MEMRI 在基础研究中仍未得到广泛应用。在这里,我们试图研究神经元的活动状态如何调节神经元间的 Mn 运输。为此,我们给小鼠注射低剂量的 MnCl2(腹腔内,20mg/kg;重复 8 天),然后在没有进一步注射 MnCl2 的情况下间隔 1 周进行两次 MEMRI 扫描。我们评估了部分感觉剥夺(单侧胡须修剪)前后(扫描 1 和扫描 2)的 T 对比强度变化,同时让动物处于感觉丰富的环境中。在对 Mn 含量的普遍衰减进行校正后,全脑分析显示扫描 1 中比扫描 2 信号更高的单个簇:与未修剪的右侧胡须相对应的左侧桶状皮层。在反向对比(扫描 2>扫描 1)中,观察到许多脑结构,包括左侧桶状皮层的许多传出纤维。这些结果表明,持续的感觉刺激引起的连续神经元活动加速了 Mn 从摄取部位到其投射末端的运输,而感觉输入的阻断和随之而来的神经元活动减少则减弱了 Mn 的运输。对大脑中 Mn 动力学这一关键特性的描述,使我们能够更好地理解 MEMRI 的功能机制,从而导致更精心设计的实验和对结果的更清晰解释。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/754e/5981681/1fb725e288f3/fncir-12-00042-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验