Suppr超能文献

基因疫苗设计中纳米与微米尺度载体 - 细胞相互作用界面的生物材料

Biomaterials at the interface of nano- and micro-scale vector-cellular interactions in genetic vaccine design.

作者信息

Jones Charles H, Hakansson Anders P, Pfeifer Blaine A

机构信息

Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA.

Department of Microbiology and Immunology, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA.

出版信息

J Mater Chem B. 2014;46:8053-8068. doi: 10.1039/C4TB01058B. Epub 2014 Sep 12.

Abstract

The development of safe and effective vaccines for the prevention of elusive infectious diseases remains a public health priority. Immunization, characterized by adaptive immune responses to specific antigens, can be raised by an array of delivery vectors. However, current commercial vaccination strategies are predicated on the retooling of archaic technology. This review will discuss current and emerging strategies designed to elicit immune responses in the context of genetic vaccination. Selected strategies at the biomaterial-biological interface will be emphasized to illustrate the potential of coupling both fields towards a common goal.

摘要

开发安全有效的疫苗以预防难以捉摸的传染病仍然是公共卫生的优先事项。免疫接种以对特定抗原的适应性免疫反应为特征,可通过一系列递送载体引发。然而,目前的商业疫苗接种策略基于对陈旧技术的改造。本综述将讨论在基因疫苗接种背景下旨在引发免疫反应的当前和新兴策略。将重点介绍生物材料-生物学界面的选定策略,以说明将这两个领域结合起来实现共同目标的潜力。

相似文献

1
Biomaterials at the interface of nano- and micro-scale vector-cellular interactions in genetic vaccine design.
J Mater Chem B. 2014;46:8053-8068. doi: 10.1039/C4TB01058B. Epub 2014 Sep 12.
2
Nano-vaccines for gene delivery against HIV-1 infection.
Expert Rev Vaccines. 2023 Jan-Dec;22(1):315-326. doi: 10.1080/14760584.2023.2193266.
3
Emerging skin-targeted drug delivery strategies to engineer immunity: A focus on infectious diseases.
Expert Opin Drug Deliv. 2021 Feb;18(2):151-167. doi: 10.1080/17425247.2021.1823964. Epub 2020 Oct 6.
4
The efficacy of genetic vaccination is dependent upon the nature of the vector system and antigen.
Expert Opin Biol Ther. 2002 Jan;2(1):75-85. doi: 10.1517/14712598.2.1.75.
5
Intranasal Subunit Vaccination Strategies Employing Nanomaterials and Biomaterials.
ACS Biomater Sci Eng. 2021 May 10;7(5):1765-1779. doi: 10.1021/acsbiomaterials.0c01291. Epub 2020 Dec 16.
6
Factors Which Contribute to the Immunogenicity of Non-replicating Adenoviral Vectored Vaccines.
Front Immunol. 2020 May 19;11:909. doi: 10.3389/fimmu.2020.00909. eCollection 2020.
7
In situ pneumococcal vaccine production and delivery through a hybrid biological-biomaterial vector.
Sci Adv. 2016 Jul 1;2(7):e1600264. doi: 10.1126/sciadv.1600264. eCollection 2016 Jul.
8
Biomaterial-Driven Immunomodulation: Cell Biology-Based Strategies to Mitigate Severe Inflammation and Sepsis.
Front Immunol. 2020 Aug 4;11:1726. doi: 10.3389/fimmu.2020.01726. eCollection 2020.
9
VSV-GP: a potent viral vaccine vector that boosts the immune response upon repeated applications.
J Virol. 2014 May;88(9):4897-907. doi: 10.1128/JVI.03276-13. Epub 2014 Feb 19.
10
Expanding the repertoire of Modified Vaccinia Ankara-based vaccine vectors via genetic complementation strategies.
PLoS One. 2009;4(5):e5445. doi: 10.1371/journal.pone.0005445. Epub 2009 May 6.

引用本文的文献

1
How Far Are Non-Viral Vectors to Come of Age and Reach Clinical Translation in Gene Therapy?
Int J Mol Sci. 2021 Jul 14;22(14):7545. doi: 10.3390/ijms22147545.
2
Overcoming Gene-Delivery Hurdles: Physiological Considerations for Nonviral Vectors.
Trends Biotechnol. 2016 Feb;34(2):91-105. doi: 10.1016/j.tibtech.2015.11.004. Epub 2015 Dec 23.
3
Contemporary approaches for nonviral gene therapy.
Discov Med. 2015 Jun;19(107):447-54.
4
Influence of molecular weight upon mannosylated bio-synthetic hybrids for targeted antigen presenting cell gene delivery.
Biomaterials. 2015 Jul;58:103-11. doi: 10.1016/j.biomaterials.2015.04.033. Epub 2015 May 11.
5
Improved Escherichia coli Bactofection and Cytotoxicity by Heterologous Expression of Bacteriophage ΦX174 Lysis Gene E.
Mol Pharm. 2015 May 4;12(5):1691-700. doi: 10.1021/acs.molpharmaceut.5b00172. Epub 2015 Apr 16.
6
Structure-Function Assessment of Mannosylated Poly(β-amino esters) upon Targeted Antigen Presenting Cell Gene Delivery.
Biomacromolecules. 2015 May 11;16(5):1534-41. doi: 10.1021/acs.biomac.5b00062. Epub 2015 Apr 16.

本文引用的文献

1
Polymeric Materials for Gene Delivery and DNA Vaccination.
Adv Mater. 2009 Feb 23;21(8):847-867. doi: 10.1002/adma.200801478. Epub 2008 Dec 4.
2
Effects of MIP-1α, MIP-3α, and MIP-3β on the Induction of HIV Gag-specific Immune Response with DNA Vaccines.
Mol Ther. 2007 May;15(5):1007-1015. doi: 10.1038/mt.sj.6300129. Epub 2016 Dec 7.
4
Hybrid biosynthetic gene therapy vector development and dual engineering capacity.
Proc Natl Acad Sci U S A. 2014 Aug 26;111(34):12360-5. doi: 10.1073/pnas.1411355111. Epub 2014 Aug 11.
5
Pathogen-like particles: biomimetic vaccine carriers engineered at the nanoscale.
Curr Opin Biotechnol. 2014 Aug;28:51-8. doi: 10.1016/j.copbio.2013.11.005. Epub 2013 Dec 7.
6
Engaging adaptive immunity with biomaterials.
J Mater Chem B. 2014 May 7;2(17):2409-2421. doi: 10.1039/C3TB21549K.
7
Construction and characterization of a Vibrio cholerae serogroup O139 vaccine candidate by genetic engineering.
Mol Med Rep. 2014 Jun;9(6):2239-44. doi: 10.3892/mmr.2014.2065. Epub 2014 Mar 24.
8
Nanoparticles and microparticles of polymers and polysaccharides to administer fish vaccines.
Biol Res. 2013;46(4):407-19. doi: 10.4067/S0716-97602013000400012.
9
Construction and evaluation of V. cholerae O139 mutant, VCUSM21P, as a safe live attenuated cholera vaccine.
PLoS One. 2014 Feb 5;9(2):e81817. doi: 10.1371/journal.pone.0081817. eCollection 2014.
10
Bioengineered bacterial outer membrane vesicles as cell-specific drug-delivery vehicles for cancer therapy.
ACS Nano. 2014 Feb 25;8(2):1525-37. doi: 10.1021/nn405724x. Epub 2014 Jan 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验