Johnson Stephen B, Adekkanattu Prakash, Campion Thomas R, Flory James, Pathak Jyotishman, Patterson Olga V, DuVall Scott L, Major Vincent, Aphinyanaphongs Yindalon
Healthcare Policy and Research, Weill Cornell Medicine, New York, New York.
Information Technologies & Services, Weill Cornell Medicine, New York, New York.
AMIA Jt Summits Transl Sci Proc. 2018 May 18;2017:104-112. eCollection 2018.
Natural Language Processing (NLP) holds potential for patient care and clinical research, but a gap exists between promise and reality. While some studies have demonstrated portability of NLP systems across multiple sites, challenges remain. Strategies to mitigate these challenges can strive for complex NLP problems using advanced methods (hard-to-reach fruit), or focus on simple NLP problems using practical methods (low-hanging fruit). This paper investigates a practical strategy for NLP portability using extraction of left ventricular ejection fraction (LVEF) as a use case. We used a tool developed at the Department of Veterans Affair (VA) to extract the LVEF values from free-text echocardiograms in the MIMIC-III database. The approach showed an accuracy of 98.4%, sensitivity of 99.4%, a positive predictive value of 98.7%, and F-score of 99.0%. This experience, in which a simple NLP solution proved highly portable with excellent performance, illustrates the point that simple NLP applications may be easier to disseminate and adapt, and in the short term may prove more useful, than complex applications.
自然语言处理(NLP)在患者护理和临床研究方面具有潜力,但在前景与现实之间存在差距。虽然一些研究已经证明了NLP系统在多个地点的可移植性,但挑战依然存在。缓解这些挑战的策略可以是使用先进方法解决复杂的NLP问题(难以触及的成果),或者使用实用方法专注于简单的NLP问题(低垂的果实)。本文以提取左心室射血分数(LVEF)为例,研究了一种实现NLP可移植性的实用策略。我们使用美国退伍军人事务部(VA)开发的一种工具,从MIMIC-III数据库中的自由文本超声心动图中提取LVEF值。该方法的准确率为98.4%,灵敏度为99.4%,阳性预测值为98.7%,F值为99.0%。这一经验表明,一个简单的NLP解决方案被证明具有高度的可移植性且性能出色,说明了简单的NLP应用可能比复杂应用更容易传播和适应,并且在短期内可能更有用。