Suppr超能文献

使用自然语言处理识别低血糖患者:系统文献综述

Identifying Patients With Hypoglycemia Using Natural Language Processing: Systematic Literature Review.

作者信息

Zheng Yaguang, Dickson Victoria Vaughan, Blecker Saul, Ng Jason M, Rice Brynne Campbell, Melkus Gail D'Eramo, Shenkar Liat, Mortejo Marie Claire R, Johnson Stephen B

机构信息

Rory Meyers College of Nursing, New York University, New York, NY, United States.

Department of Population Health, Grossman School of Medicine, New York University, New York, NY, United States.

出版信息

JMIR Diabetes. 2022 May 16;7(2):e34681. doi: 10.2196/34681.

Abstract

BACKGROUND

Accurately identifying patients with hypoglycemia is key to preventing adverse events and mortality. Natural language processing (NLP), a form of artificial intelligence, uses computational algorithms to extract information from text data. NLP is a scalable, efficient, and quick method to extract hypoglycemia-related information when using electronic health record data sources from a large population.

OBJECTIVE

The objective of this systematic review was to synthesize the literature on the application of NLP to extract hypoglycemia from electronic health record clinical notes.

METHODS

Literature searches were conducted electronically in PubMed, Web of Science Core Collection, CINAHL (EBSCO), PsycINFO (Ovid), IEEE Xplore, Google Scholar, and ACL Anthology. Keywords included hypoglycemia, low blood glucose, NLP, and machine learning. Inclusion criteria included studies that applied NLP to identify hypoglycemia, reported the outcomes related to hypoglycemia, and were published in English as full papers.

RESULTS

This review (n=8 studies) revealed heterogeneity of the reported results related to hypoglycemia. Of the 8 included studies, 4 (50%) reported that the prevalence rate of any level of hypoglycemia was 3.4% to 46.2%. The use of NLP to analyze clinical notes improved the capture of undocumented or missed hypoglycemic events using International Classification of Diseases, Ninth Revision (ICD-9), and International Classification of Diseases, Tenth Revision (ICD-10), and laboratory testing. The combination of NLP and ICD-9 or ICD-10 codes significantly increased the identification of hypoglycemic events compared with individual methods; for example, the prevalence rates of hypoglycemia were 12.4% for International Classification of Diseases codes, 25.1% for an NLP algorithm, and 32.2% for combined algorithms. All the reviewed studies applied rule-based NLP algorithms to identify hypoglycemia.

CONCLUSIONS

The findings provided evidence that the application of NLP to analyze clinical notes improved the capture of hypoglycemic events, particularly when combined with the ICD-9 or ICD-10 codes and laboratory testing.

摘要

背景

准确识别低血糖患者是预防不良事件和死亡率的关键。自然语言处理(NLP)作为人工智能的一种形式,使用计算算法从文本数据中提取信息。当使用来自大量人群的电子健康记录数据源时,NLP是一种可扩展、高效且快速的提取低血糖相关信息的方法。

目的

本系统评价的目的是综合关于应用NLP从电子健康记录临床笔记中提取低血糖信息的文献。

方法

通过电子方式在PubMed、科学引文索引核心合集、护理学与健康领域数据库(EBSCO)、心理学文摘数据库(Ovid)、IEEE Xplore、谷歌学术和计算语言学会文集数据库中进行文献检索。关键词包括低血糖、低血糖症、自然语言处理和机器学习。纳入标准包括应用NLP识别低血糖、报告与低血糖相关的结果且以英文全文发表的研究。

结果

本评价(n = 8项研究)揭示了所报告的与低血糖相关结果的异质性。在纳入的8项研究中,4项(50%)报告任何程度低血糖的患病率为3.4%至46.2%。使用NLP分析临床笔记可通过国际疾病分类第九版(ICD - 9)、国际疾病分类第十版(ICD - 10)和实验室检测更好地捕捉未记录或遗漏的低血糖事件。与单独方法相比,NLP与ICD - 9或ICD - 10编码相结合显著提高了低血糖事件的识别率;例如,国际疾病分类编码的低血糖患病率为12.4%,NLP算法为25.1%,组合算法为32.2%。所有纳入评价的研究均应用基于规则的NLP算法识别低血糖。

结论

研究结果表明,应用NLP分析临床笔记可更好地捕捉低血糖事件,特别是与ICD - 9或ICD - 10编码及实验室检测相结合时。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/66a5/9152713/3a4f13fc25d0/diabetes_v7i2e34681_fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验