Suppr超能文献

评估用于处理超声心动图的自然语言处理系统的可移植性:一项回顾性、多中心观察性研究。

Evaluating the Portability of an NLP System for Processing Echocardiograms: A Retrospective, Multi-site Observational Study.

作者信息

Adekkanattu Prakash, Jiang Guoqian, Luo Yuan, Kingsbury Paul R, Xu Zhenxing, Rasmussen Luke V, Pacheco Jennifer A, Kiefer Richard C, Stone Daniel J, Brandt Pascal S, Yao Liang, Zhong Yizhen, Deng Yu, Wang Fei, Ancker Jessica S, Campion Thomas R, Pathak Jyotishman

机构信息

Weill Cornell Medicine, New York, NY.

Mayo Clinic, Rochester, MN.

出版信息

AMIA Annu Symp Proc. 2020 Mar 4;2019:190-199. eCollection 2019.

Abstract

While natural language processing (NLP) of unstructured clinical narratives holds the potential for patient care and clinical research, portability of NLP approaches across multiple sites remains a major challenge. This study investigated the portability of an NLP system developed initially at the Department of Veterans Affairs (VA) to extract 27 key cardiac concepts from free-text or semi-structured echocardiograms from three academic edical centers: Weill Cornell Medicine, Mayo Clinic and Northwestern Medicine. While the NLP system showed high precision and recall easurements for four target concepts (aortic valve regurgitation, left atrium size at end systole, mitral valve regurgitation, tricuspid valve regurgitation) across all sites, we found moderate or poor results for the remaining concepts and the NLP system performance varied between individual sites.

摘要

虽然对非结构化临床叙述进行自然语言处理(NLP)在患者护理和临床研究方面具有潜力,但NLP方法在多个地点的可移植性仍然是一个重大挑战。本研究调查了最初由退伍军人事务部(VA)开发的一个NLP系统的可移植性,该系统用于从三个学术医疗中心(威尔康奈尔医学院、梅奥诊所和西北大学医学院)的自由文本或半结构化超声心动图中提取27个关键心脏概念。虽然该NLP系统在所有地点对四个目标概念(主动脉瓣反流、收缩末期左心房大小、二尖瓣反流、三尖瓣反流)显示出高精度和召回率测量结果,但我们发现其余概念的结果中等或较差,并且NLP系统的性能在各个地点之间存在差异。

相似文献

4
Ensembles of natural language processing systems for portable phenotyping solutions.
J Biomed Inform. 2019 Dec;100:103318. doi: 10.1016/j.jbi.2019.103318. Epub 2019 Oct 23.
8
Generalizability and portability of natural language processing system to extract individual social risk factors.
Int J Med Inform. 2023 Sep;177:105115. doi: 10.1016/j.ijmedinf.2023.105115. Epub 2023 Jun 5.

引用本文的文献

1
Artificial Intelligence in the Screening, Diagnosis, and Management of Aortic Stenosis.
Rev Cardiovasc Med. 2024 Jan 17;25(1):31. doi: 10.31083/j.rcm2501031. eCollection 2024 Jan.
7
Automated interpretation of stress echocardiography reports using natural language processing.
Eur Heart J Digit Health. 2022 Sep 5;3(4):626-637. doi: 10.1093/ehjdh/ztac047. eCollection 2022 Dec.
10
Characterizing variability of electronic health record-driven phenotype definitions.
J Am Med Inform Assoc. 2023 Feb 16;30(3):427-437. doi: 10.1093/jamia/ocac235.

本文引用的文献

1
Developing a portable natural language processing based phenotyping system.
BMC Med Inform Decis Mak. 2019 Apr 4;19(Suppl 3):78. doi: 10.1186/s12911-019-0786-z.
2
Natural Language Processing for EHR-Based Computational Phenotyping.
IEEE/ACM Trans Comput Biol Bioinform. 2019 Jan-Feb;16(1):139-153. doi: 10.1109/TCBB.2018.2849968. Epub 2018 Jun 25.
4
Clinical information extraction applications: A literature review.
J Biomed Inform. 2018 Jan;77:34-49. doi: 10.1016/j.jbi.2017.11.011. Epub 2017 Nov 21.
5
The MIMIC Code Repository: enabling reproducibility in critical care research.
J Am Med Inform Assoc. 2018 Jan 1;25(1):32-39. doi: 10.1093/jamia/ocx084.
6
Unlocking echocardiogram measurements for heart disease research through natural language processing.
BMC Cardiovasc Disord. 2017 Jun 12;17(1):151. doi: 10.1186/s12872-017-0580-8.
8
Extraction of left ventricular ejection fraction information from various types of clinical reports.
J Biomed Inform. 2017 Mar;67:42-48. doi: 10.1016/j.jbi.2017.01.017. Epub 2017 Feb 2.
10
Extracting and analyzing ejection fraction values from electronic echocardiography reports in a large health maintenance organization.
Health Informatics J. 2017 Dec;23(4):319-328. doi: 10.1177/1460458216651917. Epub 2016 Jun 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验