Adekkanattu Prakash, Jiang Guoqian, Luo Yuan, Kingsbury Paul R, Xu Zhenxing, Rasmussen Luke V, Pacheco Jennifer A, Kiefer Richard C, Stone Daniel J, Brandt Pascal S, Yao Liang, Zhong Yizhen, Deng Yu, Wang Fei, Ancker Jessica S, Campion Thomas R, Pathak Jyotishman
Weill Cornell Medicine, New York, NY.
Mayo Clinic, Rochester, MN.
AMIA Annu Symp Proc. 2020 Mar 4;2019:190-199. eCollection 2019.
While natural language processing (NLP) of unstructured clinical narratives holds the potential for patient care and clinical research, portability of NLP approaches across multiple sites remains a major challenge. This study investigated the portability of an NLP system developed initially at the Department of Veterans Affairs (VA) to extract 27 key cardiac concepts from free-text or semi-structured echocardiograms from three academic edical centers: Weill Cornell Medicine, Mayo Clinic and Northwestern Medicine. While the NLP system showed high precision and recall easurements for four target concepts (aortic valve regurgitation, left atrium size at end systole, mitral valve regurgitation, tricuspid valve regurgitation) across all sites, we found moderate or poor results for the remaining concepts and the NLP system performance varied between individual sites.
虽然对非结构化临床叙述进行自然语言处理(NLP)在患者护理和临床研究方面具有潜力,但NLP方法在多个地点的可移植性仍然是一个重大挑战。本研究调查了最初由退伍军人事务部(VA)开发的一个NLP系统的可移植性,该系统用于从三个学术医疗中心(威尔康奈尔医学院、梅奥诊所和西北大学医学院)的自由文本或半结构化超声心动图中提取27个关键心脏概念。虽然该NLP系统在所有地点对四个目标概念(主动脉瓣反流、收缩末期左心房大小、二尖瓣反流、三尖瓣反流)显示出高精度和召回率测量结果,但我们发现其余概念的结果中等或较差,并且NLP系统的性能在各个地点之间存在差异。