Carrell David S, Schoen Robert E, Leffler Daniel A, Morris Michele, Rose Sherri, Baer Andrew, Crockett Seth D, Gourevitch Rebecca A, Dean Katie M, Mehrotra Ateev
Kaiser Permanente of Washington Health Research Institute (formerly Group Health Research Institute), Seattle, WA, USA.
Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine and Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA.
J Am Med Inform Assoc. 2017 Sep 1;24(5):986-991. doi: 10.1093/jamia/ocx039.
Widespread application of clinical natural language processing (NLP) systems requires taking existing NLP systems and adapting them to diverse and heterogeneous settings. We describe the challenges faced and lessons learned in adapting an existing NLP system for measuring colonoscopy quality.
Colonoscopy and pathology reports from 4 settings during 2013-2015, varying by geographic location, practice type, compensation structure, and electronic health record.
Though successful, adaptation required considerably more time and effort than anticipated. Typical NLP challenges in assembling corpora, diverse report structures, and idiosyncratic linguistic content were greatly magnified.
Strategies for addressing adaptation challenges include assessing site-specific diversity, setting realistic timelines, leveraging local electronic health record expertise, and undertaking extensive iterative development. More research is needed on how to make it easier to adapt NLP systems to new clinical settings.
A key challenge in widespread application of NLP is adapting existing systems to new clinical settings.
临床自然语言处理(NLP)系统的广泛应用需要对现有的NLP系统进行调整,使其适应不同且异构的环境。我们描述了在调整用于测量结肠镜检查质量的现有NLP系统时所面临的挑战和吸取的经验教训。
收集了2013年至2015年期间来自4个不同环境的结肠镜检查和病理报告,这些环境在地理位置、执业类型、补偿结构和电子健康记录方面存在差异。
尽管取得了成功,但调整所需的时间和精力比预期多得多。在组装语料库、处理多样的报告结构和独特的语言内容等典型的NLP挑战被大大放大。
应对调整挑战的策略包括评估特定地点的多样性、设定现实的时间表、利用当地电子健康记录方面的专业知识以及进行广泛的迭代开发。关于如何使NLP系统更易于适应新的临床环境,还需要更多的研究。
NLP广泛应用中的一个关键挑战是使现有系统适应新的临床环境。