Leibniz Institute for Prevention Research and Epidemiology-BIPS, Bremen, Germany.
Scientific Institute of TK for Benefit and Efficiency in Health Care-WINEG, Hamburg, Germany.
Stat Med. 2018 Oct 30;37(24):3455-3470. doi: 10.1002/sim.7823. Epub 2018 Jun 11.
In survival analyses, inverse-probability-of-treatment (IPT) and inverse-probability-of-censoring (IPC) weighted estimators of parameters in marginal structural Cox models are often used to estimate treatment effects in the presence of time-dependent confounding and censoring. In most applications, a robust variance estimator of the IPT and IPC weighted estimator is calculated leading to conservative confidence intervals. This estimator assumes that the weights are known rather than estimated from the data. Although a consistent estimator of the asymptotic variance of the IPT and IPC weighted estimator is generally available, applications and thus information on the performance of the consistent estimator are lacking. Reasons might be a cumbersome implementation in statistical software, which is further complicated by missing details on the variance formula. In this paper, we therefore provide a detailed derivation of the variance of the asymptotic distribution of the IPT and IPC weighted estimator and explicitly state the necessary terms to calculate a consistent estimator of this variance. We compare the performance of the robust and consistent variance estimators in an application based on routine health care data and in a simulation study. The simulation reveals no substantial differences between the 2 estimators in medium and large data sets with no unmeasured confounding, but the consistent variance estimator performs poorly in small samples or under unmeasured confounding, if the number of confounders is large. We thus conclude that the robust estimator is more appropriate for all practical purposes.
在生存分析中,逆概率治疗(IPT)和逆概率删失(IPC)加权估计量常用于在存在时变混杂和删失的情况下估计边缘结构 Cox 模型中的参数的治疗效果。在大多数应用中,会计算 IPT 和 IPC 加权估计量的稳健方差估计量,从而导致置信区间保守。该估计量假设权重是已知的,而不是从数据中估计的。尽管一般可以获得 IPT 和 IPC 加权估计量的渐近方差的一致估计量,但缺乏应用程序和有关该一致估计量性能的信息。原因可能是统计软件中的实施比较繁琐,并且方差公式的详细信息缺失进一步复杂化。因此,在本文中,我们详细推导了 IPT 和 IPC 加权估计量渐近分布的方差,并明确说明了计算该方差一致估计量所需的项。我们在基于常规医疗保健数据的应用程序和模拟研究中比较了稳健和一致方差估计量的性能。模拟结果表明,在没有未测量混杂的中等和大型数据集以及没有未测量混杂的情况下,这两种估计量之间没有实质性差异,但如果混杂因素数量较大,则一致方差估计量在小样本或未测量混杂的情况下表现不佳。因此,我们得出结论,稳健估计量在所有实际用途中更为合适。