Department of Polymer Science and Materials, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, PR China.
Department of Polymer Science and Materials, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, PR China.
Carbohydr Polym. 2018 Sep 15;196:82-91. doi: 10.1016/j.carbpol.2018.05.023. Epub 2018 May 15.
FeO nanocomposite hydrogels, with intrinsic magnetism, can be potentially applied in extensive fields. However, the poor mechanical properties and complex fabrication processes of conventional magnetic hydrogels seriously limit their advanced applications. Herein, this work demonstrates an efficient and easily industrialized method to prepare self-recovery magnetic hydrogels with excellent mechanical performances. In this method, FeO nanoparticles were facilely dispersed in polyacrylamide (PAM) hydrogels with the assistance of nanofibrillated cellulose (NFC), resulting in good magnetism. The tensile strength and elongation at break of hydrogels increase from 150 to 780 KPa, 1400% to 2960%, respectively, due to the unique network structure and the strong hydrogen bonding interaction between NFC and PAM. Moreover, the obtained hydrogels possess the satisfactory self-recovery ability, thermal stability, and shear resistance. We believe this efficient and simple method can expand the application of high-performance composite hydrogels in biological, medical and environmental fields.
FeO 纳米复合水凝胶具有内在磁性,可应用于广泛的领域。然而,传统磁性水凝胶较差的机械性能和复杂的制造工艺严重限制了它们的高级应用。在此,本工作展示了一种高效且易于工业化的方法,用于制备具有优异机械性能的自恢复磁性水凝胶。在该方法中,FeO 纳米颗粒在纳米纤维素纤维(NFC)的辅助下被轻易地分散在聚丙烯酰胺(PAM)水凝胶中,从而具有良好的磁性。由于独特的网络结构和 NFC 与 PAM 之间的强氢键相互作用,水凝胶的拉伸强度和断裂伸长率分别从 150kPa 增加到 780kPa,从 1400%增加到 2960%。此外,所得到的水凝胶具有令人满意的自恢复能力、热稳定性和抗剪切性。我们相信这种高效简单的方法可以扩展高性能复合水凝胶在生物、医学和环境领域的应用。