Xuan Xueting, Li Yi, Xu Xing, Pan Zhouyi, Li Yu, Luo Yonghao, Sun Li
School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
Nanotechnology Research Institute, College of Materials and Textile Engineering, Jiaxing University, Jiaxing 314001, China.
Gels. 2025 Jan 15;11(1):67. doi: 10.3390/gels11010067.
Stimuli-responsive hydrogels hold immense promise for biomedical applications, but conventional gelation processes often struggle to achieve the precision and complexity required for advanced functionalities such as soft robotics, targeted drug delivery, and tissue engineering. This study introduces a class of 3D-printable magnetic hydrogels with tunable stiffness, adhesion, and magnetic responsiveness, prepared through a simple and efficient "one-pot" method. This approach enables precise control over the hydrogel's mechanical properties, with an elastic modulus ranging from 43 kPa to 277 kPa, tensile strength from 93 kPa to 421 kPa, and toughness from 243 kJ/m to 1400 kJ/m, achieved by modulating the concentrations of acrylamide (AM) and FeO nanoparticles. These hydrogels exhibit rapid heating under an alternating magnetic field, reaching 44.4 °C within 600 s at 15 wt%, demonstrating the potential for use in mild magnetic hyperthermia. Furthermore, the integration of FeO nanoparticles and nanoclay into the AM precursor optimizes the rheological properties and ensures high printability, enabling the fabrication of complex, high-fidelity structures through extrusion-based 3D printing. Compared to existing magnetic hydrogels, our 3D-printable platform uniquely combines adjustable mechanical properties, strong adhesion, and multifunctionality, offering enhanced capabilities for use in magnetic actuation and hyperthermia in biomedical applications. This advancement marks a significant step toward the scalable production of next-generation intelligent hydrogels for precision medicine and bioengineering.
刺激响应性水凝胶在生物医学应用中具有巨大潜力,但传统的凝胶化过程往往难以实现软机器人技术、靶向药物递送和组织工程等先进功能所需的精度和复杂性。本研究介绍了一类具有可调刚度、粘附性和磁响应性的3D可打印磁性水凝胶,通过一种简单高效的“一锅法”制备而成。这种方法能够精确控制水凝胶的机械性能,通过调节丙烯酰胺(AM)和FeO纳米颗粒的浓度,弹性模量范围为43 kPa至277 kPa,拉伸强度为93 kPa至421 kPa,韧性为243 kJ/m至1400 kJ/m。这些水凝胶在交变磁场下表现出快速加热,在15 wt%时600 s内达到44.4 °C,显示出在温和磁热疗中的应用潜力。此外,将FeO纳米颗粒和纳米粘土整合到AM前体中优化了流变性能,并确保了高可打印性,能够通过基于挤出的3D打印制造复杂的高保真结构。与现有的磁性水凝胶相比,我们的3D可打印平台独特地结合了可调机械性能、强粘附性和多功能性,为生物医学应用中的磁驱动和热疗提供了增强的能力。这一进展标志着朝着为精准医学和生物工程可扩展生产下一代智能水凝胶迈出了重要一步。
J Mater Chem B. 2021-11-17
Biosens Bioelectron. 2024-7-1
ACS Appl Mater Interfaces. 2018-3-15
Polymers (Basel). 2022-2-8
J Mater Chem B. 2013-10-14
Colloids Surf B Biointerfaces. 2023-1
Macromol Rapid Commun. 2024-10
Macromol Rapid Commun. 2023-8
Front Chem. 2022-10-11