文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于磁驱动和磁热疗应用的具有可调刚度和粘附力的三维可打印磁性水凝胶。

Three-Dimensional Printable Magnetic Hydrogels with Adjustable Stiffness and Adhesion for Magnetic Actuation and Magnetic Hyperthermia Applications.

作者信息

Xuan Xueting, Li Yi, Xu Xing, Pan Zhouyi, Li Yu, Luo Yonghao, Sun Li

机构信息

School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.

Nanotechnology Research Institute, College of Materials and Textile Engineering, Jiaxing University, Jiaxing 314001, China.

出版信息

Gels. 2025 Jan 15;11(1):67. doi: 10.3390/gels11010067.


DOI:10.3390/gels11010067
PMID:39852038
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11764729/
Abstract

Stimuli-responsive hydrogels hold immense promise for biomedical applications, but conventional gelation processes often struggle to achieve the precision and complexity required for advanced functionalities such as soft robotics, targeted drug delivery, and tissue engineering. This study introduces a class of 3D-printable magnetic hydrogels with tunable stiffness, adhesion, and magnetic responsiveness, prepared through a simple and efficient "one-pot" method. This approach enables precise control over the hydrogel's mechanical properties, with an elastic modulus ranging from 43 kPa to 277 kPa, tensile strength from 93 kPa to 421 kPa, and toughness from 243 kJ/m to 1400 kJ/m, achieved by modulating the concentrations of acrylamide (AM) and FeO nanoparticles. These hydrogels exhibit rapid heating under an alternating magnetic field, reaching 44.4 °C within 600 s at 15 wt%, demonstrating the potential for use in mild magnetic hyperthermia. Furthermore, the integration of FeO nanoparticles and nanoclay into the AM precursor optimizes the rheological properties and ensures high printability, enabling the fabrication of complex, high-fidelity structures through extrusion-based 3D printing. Compared to existing magnetic hydrogels, our 3D-printable platform uniquely combines adjustable mechanical properties, strong adhesion, and multifunctionality, offering enhanced capabilities for use in magnetic actuation and hyperthermia in biomedical applications. This advancement marks a significant step toward the scalable production of next-generation intelligent hydrogels for precision medicine and bioengineering.

摘要

刺激响应性水凝胶在生物医学应用中具有巨大潜力,但传统的凝胶化过程往往难以实现软机器人技术、靶向药物递送和组织工程等先进功能所需的精度和复杂性。本研究介绍了一类具有可调刚度、粘附性和磁响应性的3D可打印磁性水凝胶,通过一种简单高效的“一锅法”制备而成。这种方法能够精确控制水凝胶的机械性能,通过调节丙烯酰胺(AM)和FeO纳米颗粒的浓度,弹性模量范围为43 kPa至277 kPa,拉伸强度为93 kPa至421 kPa,韧性为243 kJ/m至1400 kJ/m。这些水凝胶在交变磁场下表现出快速加热,在15 wt%时600 s内达到44.4 °C,显示出在温和磁热疗中的应用潜力。此外,将FeO纳米颗粒和纳米粘土整合到AM前体中优化了流变性能,并确保了高可打印性,能够通过基于挤出的3D打印制造复杂的高保真结构。与现有的磁性水凝胶相比,我们的3D可打印平台独特地结合了可调机械性能、强粘附性和多功能性,为生物医学应用中的磁驱动和热疗提供了增强的能力。这一进展标志着朝着为精准医学和生物工程可扩展生产下一代智能水凝胶迈出了重要一步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/466c/11764729/5a07df17c0b4/gels-11-00067-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/466c/11764729/ba5a275d0c88/gels-11-00067-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/466c/11764729/f85d210c22fd/gels-11-00067-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/466c/11764729/b435cccdb2d9/gels-11-00067-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/466c/11764729/7009cc37f441/gels-11-00067-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/466c/11764729/b809da8ba91e/gels-11-00067-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/466c/11764729/fe22168ed176/gels-11-00067-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/466c/11764729/76b349493083/gels-11-00067-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/466c/11764729/53e62fdf0ba2/gels-11-00067-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/466c/11764729/754073e3ddd7/gels-11-00067-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/466c/11764729/f93483eedadc/gels-11-00067-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/466c/11764729/5a07df17c0b4/gels-11-00067-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/466c/11764729/ba5a275d0c88/gels-11-00067-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/466c/11764729/f85d210c22fd/gels-11-00067-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/466c/11764729/b435cccdb2d9/gels-11-00067-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/466c/11764729/7009cc37f441/gels-11-00067-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/466c/11764729/b809da8ba91e/gels-11-00067-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/466c/11764729/fe22168ed176/gels-11-00067-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/466c/11764729/76b349493083/gels-11-00067-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/466c/11764729/53e62fdf0ba2/gels-11-00067-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/466c/11764729/754073e3ddd7/gels-11-00067-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/466c/11764729/f93483eedadc/gels-11-00067-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/466c/11764729/5a07df17c0b4/gels-11-00067-g011.jpg

相似文献

[1]
Three-Dimensional Printable Magnetic Hydrogels with Adjustable Stiffness and Adhesion for Magnetic Actuation and Magnetic Hyperthermia Applications.

Gels. 2025-1-15

[2]
3D printable, tough, magnetic hydrogels with programmed magnetization for fast actuation.

J Mater Chem B. 2021-11-17

[3]
Modulus-tunable multifunctional hydrogel ink with nanofillers for 3D-Printed soft electronics.

Biosens Bioelectron. 2024-7-1

[4]
Nanoclay-Based Self-Supporting Responsive Nanocomposite Hydrogels for Printing Applications.

ACS Appl Mater Interfaces. 2018-3-15

[5]
pH-Induced 3D Printable Chitosan Hydrogels for Soft Actuation.

Polymers (Basel). 2022-2-8

[6]
Recent advances in high-strength and elastic hydrogels for 3D printing in biomedical applications.

Acta Biomater. 2019-5-22

[7]
Extrusion printing of ionic-covalent entanglement hydrogels with high toughness.

J Mater Chem B. 2013-10-14

[8]
Magneto-responsive hyaluronan hydrogel for hyperthermia and bioprinting: Magnetic, rheological properties and biocompatibility.

APL Bioeng. 2023-9-7

[9]
Enhanced Electroactivity, Mechanical Properties, and Printability through the Addition of Graphene Oxide to Photo-Cross-linkable Gelatin Methacryloyl Hydrogel.

ACS Biomater Sci Eng. 2021-6-14

[10]
Three-dimensional printing of hyaluronate-based self-healing ferrogel with enhanced stretchability.

Colloids Surf B Biointerfaces. 2023-1

引用本文的文献

[1]
Advancements in Hydrogels: A Comprehensive Review of Natural and Synthetic Innovations for Biomedical Applications.

Polymers (Basel). 2025-7-24

本文引用的文献

[1]
Application of Organic Gel on Skin Realized by Hydrogel/Organic Gel Adhesion.

Macromol Rapid Commun. 2024-10

[2]
Advances in the Optimization of Fe Nanoparticles: Unlocking Antifungal Properties for Biomedical Applications.

Pharmaceutics. 2024-5-10

[3]
Spider-silk-inspired strong and tough hydrogel fibers with anti-freezing and water retention properties.

Nat Commun. 2024-5-24

[4]
Minimally Invasive Delivery of Percutaneous Ablation Agent via Magnetic Colloidal Hydrogel Injection for Treatment of Hepatocellular Carcinoma.

Adv Mater. 2024-6

[5]
Thermoreversible Tissue Adhesion with Hydrogel Through a Topological Entanglement Approach.

Macromol Rapid Commun. 2023-8

[6]
An injectable and active hydrogel induces mutually enhanced mild magnetic hyperthermia and ferroptosis.

Biomaterials. 2023-7

[7]
Multimodal Locomotion and Cargo Transportation of Magnetically Actuated Quadruped Soft Microrobots.

Cyborg Bionic Syst. 2022

[8]
Ultrasoft and Biocompatible Magnetic-Hydrogel-Based Strain Sensors for Wireless Passive Biomechanical Monitoring.

ACS Nano. 2022-12-27

[9]
Controlled Desiccation of Preprinted Hydrogel Scaffolds Toward Complex 3D Microarchitectures.

Adv Mater. 2023-2

[10]
Magnetic hydrogels with ordered structure for biomedical applications.

Front Chem. 2022-10-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索