Suppr超能文献

在近红外二区(NIR-IIb)窗口中发射出 ∼1600nm 的明亮量子点,可用于深层组织荧光成像。

Bright quantum dots emitting at ∼1,600 nm in the NIR-IIb window for deep tissue fluorescence imaging.

机构信息

Department of Chemistry, Stanford University, Stanford, CA 94305.

State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 430070 Wuhan, China.

出版信息

Proc Natl Acad Sci U S A. 2018 Jun 26;115(26):6590-6595. doi: 10.1073/pnas.1806153115. Epub 2018 Jun 11.

Abstract

With suppressed photon scattering and diminished autofluorescence, in vivo fluorescence imaging in the 1,500- to 1,700-nm range of the near-IR (NIR) spectrum (NIR-IIb window) can afford high clarity and deep tissue penetration. However, there has been a lack of NIR-IIb fluorescent probes with sufficient brightness and aqueous stability. Here, we present a bright fluorescent probe emitting at ∼1,600 nm based on core/shell lead sulfide/cadmium sulfide (CdS) quantum dots (CSQDs) synthesized in organic phase. The CdS shell plays a critical role of protecting the lead sulfide (PbS) core from oxidation and retaining its bright fluorescence through the process of amphiphilic polymer coating and transferring to water needed for imparting aqueous stability and compatibility. The resulting CSQDs with a branched PEG outer layer exhibited a long blood circulation half-life of 7 hours and enabled through-skin, real-time imaging of blood flows in mouse vasculatures at an unprecedented 60 frames per second (fps) speed by detecting ∼1,600-nm fluorescence under 808-nm excitation. It also allowed through-skin in vivo confocal 3D imaging of tumor vasculatures in mice with an imaging depth of ∼1.2 mm. The PEG-CSQDs accumulated in tumor effectively through the enhanced permeation and retention effect, affording a high tumor-to-normal tissue ratio up to ∼32 owing to the bright ∼1,600-nm emission and nearly zero autofluorescence background resulting from a large ∼800-nm Stoke's shift. The aqueous-compatible CSQDs are excreted through the biliary pathway without causing obvious toxicity effects, suggesting a useful class of ∼1,600-nm emitting probes for biomedical research.

摘要

在 1500-1700nm 近红外(NIR)光谱(NIR-IIb 窗口)范围内,抑制光子散射和减少自发荧光,活体荧光成像是可以提供高清晰度和深层组织穿透的。然而,目前缺乏具有足够亮度和水分稳定性的 NIR-IIb 荧光探针。在这里,我们提出了一种基于核/壳型 lead sulfide/cadmium sulfide(CdS)量子点(CSQDs)的亮荧光探针,其发射波长约为 1600nm,这些量子点是在有机相中合成的。CdS 壳在保护 lead sulfide(PbS)核免受氧化方面起着关键作用,并通过两亲聚合物涂层和转移到赋予水分稳定性和相容性所需的水中的过程保留其明亮的荧光。具有支化 PEG 外层的所得 CSQDs 表现出 7 小时的长血液循环半衰期,并能够通过检测 808nm 激发下约 1600nm 的荧光,以每秒 60 帧(fps)的速度实现前所未有的速度实时成像小鼠血管中的血流。它还允许通过皮肤对小鼠肿瘤血管进行体内共聚焦 3D 成像,成像深度约为 1.2mm。PEG-CSQDs 通过增强的渗透和保留效应有效地积聚在肿瘤中,由于明亮的约 1600nm 发射和几乎为零的自发荧光背景,由于大的约 800nm Stoke 位移,实现高达约 32 的高肿瘤与正常组织比。水分相容的 CSQDs 通过胆道途径排出,不会引起明显的毒性作用,这表明一类具有约 1600nm 发射的有用探针可用于生物医学研究。

相似文献

1
Bright quantum dots emitting at ∼1,600 nm in the NIR-IIb window for deep tissue fluorescence imaging.
Proc Natl Acad Sci U S A. 2018 Jun 26;115(26):6590-6595. doi: 10.1073/pnas.1806153115. Epub 2018 Jun 11.
2
Ultrabright NIR-IIb Fluorescence Quantum Dots for Targeted Imaging-Guided Surgery.
ACS Appl Mater Interfaces. 2024 Jun 26;16(25):32045-32057. doi: 10.1021/acsami.4c04748. Epub 2024 Jun 11.
3
Deep learning for in vivo near-infrared imaging.
Proc Natl Acad Sci U S A. 2021 Jan 5;118(1). doi: 10.1073/pnas.2021446118.
4
Multiplexed NIR-II Probes for Lymph Node-Invaded Cancer Detection and Imaging-Guided Surgery.
Adv Mater. 2020 Mar;32(11):e1907365. doi: 10.1002/adma.201907365. Epub 2020 Feb 5.
5
Multiplexed In Vivo Imaging Using Size-Controlled Quantum Dots in the Second Near-Infrared Window.
Adv Healthc Mater. 2018 Dec;7(24):e1800695. doi: 10.1002/adhm.201800695. Epub 2018 Nov 19.
7
A bright organic NIR-II nanofluorophore for three-dimensional imaging into biological tissues.
Nat Commun. 2018 Mar 21;9(1):1171. doi: 10.1038/s41467-018-03505-4.
8
Photostable water-dispersible NIR-emitting CdTe/CdS/ZnS core-shell-shell quantum dots for high-resolution tumor targeting.
Biomaterials. 2013 Dec;34(37):9509-18. doi: 10.1016/j.biomaterials.2013.09.005. Epub 2013 Sep 17.
10
Recent Progress in Fluorescence Imaging of the Near-Infrared II Window.
Chembiochem. 2018 Dec 18;19(24):2522-2541. doi: 10.1002/cbic.201800466. Epub 2018 Nov 9.

引用本文的文献

1
Molecular Gold Nanoclusters for Advanced NIR-II Bioimaging and Therapy.
Chem Rev. 2025 Jun 11;125(11):5195-5227. doi: 10.1021/acs.chemrev.4c00835. Epub 2025 May 28.
2
High-contrast in vivo fluorescence imaging exploiting wavelengths beyond 1880 nm.
Nat Commun. 2025 May 13;16(1):4436. doi: 10.1038/s41467-025-59630-4.
3
Simply Designed and Universal DNA Nanohydrogel for Stimuli-Responsive NIR-II Fluorescence Imaging of Early-Stage Tumor.
Anal Chem. 2025 May 27;97(20):10699-10708. doi: 10.1021/acs.analchem.5c00581. Epub 2025 May 13.
4
Advances in Ultrasmall Inorganic Nanoparticles for Nanomedicine: From Diagnosis to Therapeutics.
ACS Appl Mater Interfaces. 2025 May 21;17(20):28982-29001. doi: 10.1021/acsami.5c02810. Epub 2025 May 9.
5
The Role of Inorganic Nanomaterials in Overcoming Challenges in Colorectal Cancer Diagnosis and Therapy.
Pharmaceutics. 2025 Mar 25;17(4):409. doi: 10.3390/pharmaceutics17040409.
6
Two-plex molecular imaging in the second near-infrared window for immunotherapeutic response.
Theranostics. 2025 Mar 19;15(10):4481-4494. doi: 10.7150/thno.108880. eCollection 2025.
7
Bright Semiconductor Quantum Dots Shed New Light on Precision Nanomedicine for Various Diseases.
Small Sci. 2023 Nov 27;4(1):2300081. doi: 10.1002/smsc.202300081. eCollection 2024 Jan.
8
Dynamic Pathophysiological Insight into the Brain by NIR-II Imaging.
Adv Sci (Weinh). 2025 Apr;12(16):e2416390. doi: 10.1002/advs.202416390. Epub 2025 Mar 5.
9
A SARS-CoV-2 vaccine on an NIR-II/SWIR emitting nanoparticle platform.
Sci Adv. 2025 Feb 7;11(6):eadp5539. doi: 10.1126/sciadv.adp5539.
10
Dual Infrared 2-Photon Microscopy Achieves Minimal Background Deep Tissue Imaging in Brain and Plant Tissues.
Adv Funct Mater. 2024 Oct 29;34(44). doi: 10.1002/adfm.202404709. Epub 2024 May 27.

本文引用的文献

1
A bright organic NIR-II nanofluorophore for three-dimensional imaging into biological tissues.
Nat Commun. 2018 Mar 21;9(1):1171. doi: 10.1038/s41467-018-03505-4.
2
3D NIR-II Molecular Imaging Distinguishes Targeted Organs with High-Performance NIR-II Bioconjugates.
Adv Mater. 2018 Mar;30(13):e1705799. doi: 10.1002/adma.201705799. Epub 2018 Feb 15.
3
Next-generation optical imaging with short-wave infrared quantum dots.
Nat Biomed Eng. 2017;1. doi: 10.1038/s41551-017-0056. Epub 2017 Apr 10.
4
Targeting orthotopic gliomas with renal-clearable luminescent gold nanoparticles.
Nano Res. 2017 Apr;10(4):1366-1376. doi: 10.1007/s12274-017-1472-z. Epub 2017 Feb 21.
6
A high quantum yield molecule-protein complex fluorophore for near-infrared II imaging.
Nat Commun. 2017 May 19;8:15269. doi: 10.1038/ncomms15269.
7
In vivo imaging of neural activity.
Nat Methods. 2017 Apr;14(4):349-359. doi: 10.1038/nmeth.4230. Epub 2017 Mar 31.
8
Molecular imaging of biological systems with a clickable dye in the broad 800- to 1,700-nm near-infrared window.
Proc Natl Acad Sci U S A. 2017 Jan 31;114(5):962-967. doi: 10.1073/pnas.1617990114. Epub 2017 Jan 17.
10
Through-skull fluorescence imaging of the brain in a new near-infrared window.
Nat Photonics. 2014 Sep;8(9):723-730. doi: 10.1038/nphoton.2014.166. Epub 2014 Aug 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验