Safaee Mohammad Moein, McFarlane Ian R, Nishitani Shoichi, Yang Sarah J, Sun Ethan, Medina Sebastiana M, Squire Henry, Landry Markita P
Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA.
Innovative Genomics Institute (IGI), Berkeley, CA 94720, USA.
Adv Funct Mater. 2024 Oct 29;34(44). doi: 10.1002/adfm.202404709. Epub 2024 May 27.
Traditional deep fluorescence imaging has primarily focused on red-shifting imaging wavelengths into the near-infrared (NIR) windows or implementation of multi-photon excitation approaches. Here, we combine the advantages of NIR and multiphoton imaging by developing a dual-infrared two-photon microscope to enable high-resolution deep imaging in biological tissues. We first computationally identify that photon absorption, as opposed to scattering, is the primary contributor to signal attenuation. We next construct a NIR two-photon microscope with a 1640 nm femtosecond pulsed laser and a NIR PMT detector to image biological tissues labeled with fluorescent single-walled carbon nanotubes (SWNTs). We achieve spatial imaging resolutions close to the Abbe resolution limit and eliminate blur and background autofluorescence of biomolecules, 300 μm deep into brain slices and through the full 120 μm thickness of a leaf. We also demonstrate that NIR-II two-photon microscopy can measure tissue heterogeneity by quantifying how much the fluorescence power law function varies across tissues, a feature we exploit to distinguish Huntington's Disease afflicted mouse brain tissues from wildtype. Our results suggest dual-infrared two-photon microscopy could accomplish in-tissue structural imaging and biochemical sensing with a minimal background, and with high spatial resolution, in optically opaque or highly autofluorescent biological tissues.
传统的深度荧光成像主要集中于将成像波长红移至近红外(NIR)窗口或采用多光子激发方法。在此,我们通过开发一种双红外双光子显微镜,结合了近红外和多光子成像的优势,以实现生物组织中的高分辨率深度成像。我们首先通过计算确定,与散射相反,光子吸收是信号衰减的主要原因。接下来,我们构建了一台配备1640纳米飞秒脉冲激光器和近红外光电倍增管探测器的近红外双光子显微镜,用于对标记有荧光单壁碳纳米管(SWNTs)的生物组织进行成像。我们实现了接近阿贝分辨率极限的空间成像分辨率,并消除了生物分子的模糊和背景自发荧光,能够对脑切片300微米深处以及完整厚度为120微米的叶片进行成像。我们还证明,近红外二区双光子显微镜可以通过量化荧光幂律函数在不同组织中的变化程度来测量组织异质性,我们利用这一特性将亨廷顿舞蹈病小鼠脑组织与野生型区分开来。我们的结果表明,双红外双光子显微镜可以在光学不透明或高自发荧光的生物组织中,以最小的背景和高空间分辨率完成组织内结构成像和生化传感。