Department of Mathematical Sciences, University of Memphis, Memphis, TN 38152.
Department of Mathematics, University of Illinois, Urbana, IL 61801.
Proc Natl Acad Sci U S A. 2018 Jun 26;115(26):6548-6553. doi: 10.1073/pnas.1804484115. Epub 2018 Jun 11.
We study tree structures termed optimal channel networks (OCNs) that minimize the total gravitational energy loss in the system, an exact property of steady-state landscape configurations that prove dynamically accessible and strikingly similar to natural forms. Here, we show that every OCN is a so-called natural river tree, in the sense that there exists a height function such that the flow directions are always directed along steepest descent. We also study the natural river trees in an arbitrary graph in terms of forbidden substructures, which we call k-path obstacles, and OCNs on a d-dimensional lattice, improving earlier results by determining the minimum energy up to a constant factor for every [Formula: see text] Results extend our capabilities in environmental statistical mechanics.
我们研究了一种称为最优通道网络(OCN)的树状结构,这种结构可以使系统中的总重力能损失最小化,这是稳态地形配置的一个精确特性,证明了其具有动态可及性,并与自然形态惊人地相似。在这里,我们表明,每个 OCN 都是所谓的自然河流树,也就是说,存在一个高度函数,使得流的方向总是沿着最陡下降的方向。我们还研究了任意图中的自然河流树的禁止子结构,我们称之为 k 路径障碍物,以及 d 维晶格上的 OCN,通过确定每个[公式:见文本]的最小能量,改进了早期的结果。结果扩展了我们在环境统计力学方面的能力。