Suppr超能文献

地形高程与排水网络的变分分析

Variational analysis of landscape elevation and drainage networks.

作者信息

Hooshyar Milad, Anand Shashank, Porporato Amilcare

机构信息

Princeton Environmental Institute and Princeton Institute for International and Regional Studies, Princeton University, Princeton, NJ, USA.

Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ, USA.

出版信息

Proc Math Phys Eng Sci. 2020 Jul;476(2239):20190775. doi: 10.1098/rspa.2019.0775. Epub 2020 Jul 1.

Abstract

Landscapes evolve towards surfaces with complex networks of channels and ridges in response to climatic and tectonic forcing. Here, we analyse variational principles giving rise to minimalist models of landscape evolution as a system of partial differential equations that capture the essential dynamics of sediment and water balances. Our results show that in the absence of diffusive soil transport the steady-state surface extremizes the average domain elevation. Depending on the exponent of the specific drainage area in the erosion term, the critical surfaces are either minima (0 <  < 1) or maxima ( > 1), with  = 1 corresponding to a saddle point. We establish a connection between landscape evolution models and optimal channel networks and elucidate the role of diffusion in the governing variational principles.

摘要

地貌会因气候和构造作用力而演变成具有复杂渠道和山脊网络的表面。在此,我们分析了变分原理,这些原理产生了作为偏微分方程系统的地貌演化极简模型,该模型捕捉了沉积物和水平衡的基本动态。我们的结果表明,在没有扩散性土壤运移的情况下,稳态表面使平均区域海拔达到极值。根据侵蚀项中特定排水面积的指数,临界表面要么是最小值(0 < < 1),要么是最大值( > 1),其中 = 1 对应于鞍点。我们建立了地貌演化模型与最优渠道网络之间的联系,并阐明了扩散在支配变分原理中的作用。

相似文献

1
Variational analysis of landscape elevation and drainage networks.地形高程与排水网络的变分分析
Proc Math Phys Eng Sci. 2020 Jul;476(2239):20190775. doi: 10.1098/rspa.2019.0775. Epub 2020 Jul 1.
2
Channelization cascade in landscape evolution.地貌演化中的渠道化级联。
Proc Natl Acad Sci U S A. 2020 Jan 21;117(3):1375-1382. doi: 10.1073/pnas.1911817117. Epub 2020 Jan 8.
8
Permafrost extent sets drainage density in the Arctic.多年冻土范围决定了北极地区的排水密度。
Proc Natl Acad Sci U S A. 2024 Feb 6;121(6):e2307072120. doi: 10.1073/pnas.2307072120. Epub 2024 Feb 1.
9
Self-similarity and vanishing diffusion in fluvial landscapes.河流地貌中的自相似性与扩散消失
Proc Natl Acad Sci U S A. 2023 Dec 19;120(51):e2302401120. doi: 10.1073/pnas.2302401120. Epub 2023 Dec 14.
10
On the theory of drainage area for regular and non-regular points.关于规则点和非规则点的流域理论。
Proc Math Phys Eng Sci. 2018 Mar;474(2211):20170693. doi: 10.1098/rspa.2017.0693. Epub 2018 Mar 14.

引用本文的文献

1
Self-similarity and vanishing diffusion in fluvial landscapes.河流地貌中的自相似性与扩散消失
Proc Natl Acad Sci U S A. 2023 Dec 19;120(51):e2302401120. doi: 10.1073/pnas.2302401120. Epub 2023 Dec 14.

本文引用的文献

2
Channelization cascade in landscape evolution.地貌演化中的渠道化级联。
Proc Natl Acad Sci U S A. 2020 Jan 21;117(3):1375-1382. doi: 10.1073/pnas.1911817117. Epub 2020 Jan 8.
3
River landscapes and optimal channel networks.河流景观与最优河道网络。
Proc Natl Acad Sci U S A. 2018 Jun 26;115(26):6548-6553. doi: 10.1073/pnas.1804484115. Epub 2018 Jun 11.
4
On the theory of drainage area for regular and non-regular points.关于规则点和非规则点的流域理论。
Proc Math Phys Eng Sci. 2018 Mar;474(2211):20170693. doi: 10.1098/rspa.2017.0693. Epub 2018 Mar 14.
6
Evolution and selection of river networks: statics, dynamics, and complexity.河流网络的演化与选择:静态、动态与复杂性。
Proc Natl Acad Sci U S A. 2014 Feb 18;111(7):2417-24. doi: 10.1073/pnas.1322700111. Epub 2014 Feb 3.
7
Optimization by simulated annealing.模拟退火优化。
Science. 1983 May 13;220(4598):671-80. doi: 10.1126/science.220.4598.671.
8
Topology of the fittest transportation network.最优交通网络的拓扑结构。
Phys Rev Lett. 2000 May 15;84(20):4745-8. doi: 10.1103/PhysRevLett.84.4745.
9
Thermodynamics of fractal networks.分形网络的热力学
Phys Rev Lett. 1996 Apr 29;76(18):3364-3367. doi: 10.1103/PhysRevLett.76.3364.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验