Suppr超能文献

基于倾斜角沉积镍/氧化镍纳米线阵列的薄膜柔性超级电容器

A Thin Film Flexible Supercapacitor Based on Oblique Angle Deposited Ni/NiO Nanowire Arrays.

作者信息

Ma Jing, Liu Wen, Zhang Shuyuan, Ma Zhe, Song Peishuai, Yang Fuhua, Wang Xiaodong

机构信息

Engineering Research Center for Semiconductor Integrated Technology, Institute of Semiconductors, Chinese Academy of Science, Beijing 100083, China.

College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 101408, China.

出版信息

Nanomaterials (Basel). 2018 Jun 11;8(6):422. doi: 10.3390/nano8060422.

Abstract

With high power density, fast charging-discharging speed, and a long cycling life, supercapacitors are a kind of highly developed novel energy-storage device that has shown a growing performance and various unconventional shapes such as flexible, linear-type, stretchable, self-healing, etc. Here, we proposed a rational design of thin film, flexible micro-supercapacitors with in-plane interdigital electrodes, where the electrodes were fabricated using the oblique angle deposition technique to grow oblique Ni/NiO nanowire arrays directly on polyimide film. The obtained electrodes have a high specific surface area and good adhesion to the substrate compared with other in-plane micro-supercapacitors. Meanwhile, the as-fabricated micro-supercapacitors have good flexibility and satisfactory energy-storage performance, exhibiting a high specific capacity of 37.1 F/cm³, a high energy density of 5.14 mWh/cm³, a power density of up to 0.5 W/cm³, and good stability during charge-discharge cycles and repeated bending-recovery cycles, respectively. Our micro-supercapacitors can be used as ingenious energy storage devices for future portable and wearable electronic applications.

摘要

超级电容器具有高功率密度、快速充放电速度和长循环寿命,是一种高度发达的新型储能装置,其性能不断提升,且具有各种非常规形状,如柔性、线性、可拉伸、自修复等。在此,我们提出了一种基于薄膜的、具有平面叉指电极的柔性微型超级电容器的合理设计方案,其中电极采用倾斜角沉积技术制造,以在聚酰亚胺薄膜上直接生长倾斜的Ni/NiO纳米线阵列。与其他平面微型超级电容器相比,所制备的电极具有高比表面积和与基底良好的附着力。同时,所制备的微型超级电容器具有良好的柔韧性和令人满意的储能性能,分别表现出37.1 F/cm³的高比电容、5.14 mWh/cm³的高能量密度、高达0.5 W/cm³的功率密度,以及在充放电循环和反复弯曲-恢复循环过程中的良好稳定性。我们的微型超级电容器可作为未来便携式和可穿戴电子应用的精巧储能装置。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d329/6027448/bf29f1a8c3bb/nanomaterials-08-00422-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验